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Preface 

Who needs another introductory 
epidemiology text? Certainly, there are 
many introductory epidemiology books 
currently in print, and many of them are 
excellent. Nevertheless, there are four 
reasons why I believe that this new text 
is justified. 

Firstly, it is much shorter than most 
introductory texts, many of which contain 
more material than is required for a short 
introductory course. This is a short 
introduction to epidemiology, and is not 
intended to be comprehensive. 

Secondly, I have endeavoured to show 
clearly how the different basic 
epidemiologic methods “fit together” in a 
logical and systematic manner. For 
example, I attempt to show how the 
different possible study designs relate to 
each other, and how they are different 
approaches to a common task. Similarly, 
I attempt to show how the different study 
design issues (confounding and other 
types of bias) relate to each other, and 
how the principles and methods of data 
analysis are consistent across different 
study designs and data types. 

Thirdly, in this context, rather than 
attempt a comprehensive review of 
available methods (e.g. multiple methods 
for estimating confidence intervals for the 
summary risk ratio), I have attempted to 
select only one standard method for each 
application, which is reasonably robust 
and accurate, and which is consistent and 
coherent with the other methods 
presented in the text. 

Finally, the field of epidemiology is 
changing rapidly, not only with regards to 
its basic methods, but also with regards 
to the hypotheses which these methods 

are used to investigate. In particular, in 
recent years there has been a revival in 
public health applications of 
epidemiology, not only at the national 
level, but also at the international level, 
as epidemiologists tackle global problems 
such as climate change. This text does 
not attempt to review the more complex 
measures used to consider such issues. 
However, it does provide a coherent and 
systematic summary of the basic 
methods in the field, which can be used 
as a logical base for the teaching and 
development of research into these more 
complex issues. 

Chapter 1 gives a brief introduction to the 
field, with an emphasis on the broad 
range of applications and situations in 
which epidemiologic methods have been 
used historically, and will continue to be 
used in the future. 

Part 1 then addresses study design 
options. Chapter 2 discusses incidence 
studies (including cohort studies) and 
describes the basic study design and the 
basic effect measures (i.e. incidence rates 
and rate ratios). It then presents 
incidence case-control studies as a more 
efficient means of obtaining the same 
findings. Chapter 3 similarly discusses 
prevalence studies, and prevalence case-
control studies. Chapter 4 then considers 
study designs incorporating other axes of 
classification, continuous outcome 
measures (e.g. blood pressure) such as 
cross-sectional studies and longitudinal 
studies, or more complex study designs 
such as ecologic and multi-level studies. 
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Part 2 then addresses study design 
issues.  Chapter 5 discusses issues of 
study size and precision. Chapter 6 
considers general issues of validity, 
namely selection bias, information bias, 
and confounding. Chapter 7 discusses 
effect modification. 

Part 3 then discusses the practical issues 
of conducting a study. Chapter 8 
addresses issues of measurement of 
exposure and disease. Chapters 9-11 
then discuss the conduct of cohort 
studies, case-control studies and cross-
sectional studies respectively. 

Finally, Part 4 considers what happens 
after the data are collected, with chapter 
12 addressing data analysis and chapter 
13 the interpretation of the findings of 
epidemiologic studies. 

I should stress that this book provides no 
more than a very preliminary introduction 
to the field. In doing so I have attempted 
to use a wide range of examples, which 
give some indication of the broad range 

of situations in which epidemiologic 
methods can be used. However, there are 
undoubtedly many other types of 
epidemiologic hypotheses and 
epidemiologic studies which are not 
represented in this book. In particular, 
my focus is on the use of epidemiology in 
public health, particularly with regard to 
non-communicable disease, and I include 
few examples from clinical epidemiology 
or from communicable disease outbreak 
investigations. Nevertheless, I hope that 
the book will be of interest not only to 
epidemiologists, but also to others who 
have other training but are involved in 
epidemiologic research, including public 
health professionals, policy makers, and 
clinical researchers. 

 
Neil Pearce 
 
Centre for Public Health Research 
Massey University Wellington Campus 
Private Box 756 
Wellington, New Zealand
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CHAPTER 1. Introduction 
(In: Pearce N. A Short Introduction to Epidemiology. 2nd ed. Wellington, CPHR, 2005) 

Public health is primarily concerned with 
the prevention of disease in human 
population. It differs from clinical 
medicine both in its emphasis on 
prevention rather than treatment, and in 
its focus on populations rather than 
individual patients (table 1.1). 
Epidemiology is the branch of public 
health which attempts to discover the 
causes of disease in order to make 
disease prevention possible. 
Epidemiological methods can be used in 
other contexts (particularly in clinical 
research), but this short introductory text 
focuses on the use of epidemiology in 
public health, i.e. on its use as part of the 
wider process of discovering the causes 
of disease and preventing its occurrence 
in human populations.  

In this context, epidemiology has been 
defined as (Last, 1988):  

"the study of the distribution and 
determinants of health-related states or 
events in specified populations, and the 
application of this study to control of 
health problems" 

This broad definition could in theory 
include a broad range of research 
methodologies including qualitative 
research and quantitative randomised  
controlled trials. Some epidemiologists 

recognise the complementary nature of 
the former (McKinlay, 1993), and some 
texts include the latter in their definition 
of epidemiology. However, the key 
feature of epidemiological studies is that 
they are quantitative (rather than 
qualitative) observational (rather than 
experimental) studies of the determinants 
of disease in human populations (rather 
than individuals). This will be my focus 
here, while recognising the value, and 
complementary nature, of other research 
methodologies. The observational 
approach is a major strength of 
epidemiology as it enables a study to be 
conducted in a situation where a 
randomized trial would be unethical or 
impractical (because of the large 
numbers of subjects required). It is also 
the main limitation of epidemiological 
studies in that the lack of randomization 
means that the groups being compared 
may differ with respect to various causes 
of disease (other than the main exposure 
under investigation). Thus, 
epidemiological studies, in general, 
experience the same potential problems 
as randomized controlled trials, but may 
suffer additional problems of bias because 
exposure has not been randomly 
allocated and there may be differences in 
baseline disease risk between the 
populations being compared.

 

Table 1.1 
 
The defining features of public health: populations and prevention 
 
  Prevention Treatment 
  ---------------------------------------------------------------------- 
 Populations Public health Health systems research 

 Individuals Primary health care/ Medicine (including primary health care) 
  Health education 
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1.1 Germs and Miasmas 

Epidemiology is as old as public health 
itself, and it is not difficult to find 
epidemiological observations made by 
physicians dating back to Hippocrates 
who observed that: 

“Whoever wishes to investigate 
medicine properly should proceed thus: 
in the first place to consider the 
seasons of the year, and what effects 
each of them produces… when one 
comes into a city in which he is a 
stranger, he should consider its 
situation, how it lies as to the winds 
and the rising of the sun…One should 
consider most attentively the waters 
which the inhabitants use…and the 
ground… and the mode in which the 
inhabitants live, and what are their 
pursuits, whether they are fond of 
drinking and eating to excess, and 
given to indolence, or are fond of 
exercise and labor”. (Hippocrates, 
1938; quoted in Hennekens and Buring, 
1987) 

Many other examples of epidemiological 
reasoning were published through the 

ages. However, epidemiology was 
founded as an independent discipline in a 
number of Western countries in parallel 
with the industrial revolution of the 19th 
century. In Anglophone countries it is 
considered to have been founded by the 
work of Chadwick, Engels, Snow and 
others who exposed the appalling social 
conditions during the industrial 
revolution, and the work of Farr and 
others who revealed major 
socioeconomic differences in disease in 
the 19th century. At that time, 
epidemiology was generally regarded as 
a branch of public health and focused on 
the causes and prevention of disease in 
populations, in comparison with the 
clinical sciences which were branches of 
medicine and focussed on disease 
pathology and treatment of disease in 
individuals. Thus, the emphasis was on 
the prevention of disease and the health 
needs of the population as a whole. In 
this context, the fundamental 
importance of population-level factors 
(the urban environment, housing, 
socioeconomic factors, etc) was clearly 
acknowledged (Terris, 1987).

Table 1.2 

Deaths and death rates from cholera in London 1854 in households supplied by the 
Southwark and Vauxhall Water Company and by the Lambeth Water Company 
 
 Deaths 
 Cholera per 10,000 
 Houses deaths houses 
------------------------------------------------------------------------------------------------ 

Southwark and Vauxhall 40,046 1,263 315 

Lambeth Company 26,107 98 37 

Rest of London 256,423 1,422 59 

------------------------------------------------------------------------------------------------ 
Source: (Snow, 1936; quoted in Winkelstein, 1995)
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Perhaps the most commonly quoted 
epidemiologic legend is that of Snow who 
studied the causes of cholera in London 
in the mid-19th century (Winkelstein, 
1995). Snow was able to establish that 
the cholera death rate was much higher 
in areas supplied by the Southwark and 
Vauxhall Company which took water 
from the Thames downstream from 
London (i.e. after it had been 
contaminated with sewerage) than in 
areas supplied by the Lambeth Company 
which took water from upstream, with 
the death rates being intermediate in 
areas served by both companies. 
Subsequently, Snow (1936) studied the 
area supplied by both companies, and 
within this area walked the streets to 
determine for each house in which a 
cholera death had occurred, which 
company supplied the water. The death 
rate was almost ten times as high in 
houses supplied with water containing 
sewerage (table 1.2). 

Although epidemiologists and other 
researchers continue to battle over 
Snow’s legacy and its implications for 
epidemiology today (Cameron and Jones, 

1983; Loomis and Wing, 1991; Samet, 
2000; Vandenbroucke, 1994), it is clear 
that Snow was able to discover, and 
establish convincing proof for, the mode 
of transmission of cholera, and to take 
preventive action several decades before 
the biological basis of his observations 
was understood. Thus, it was not until 
several decades after the work of Snow 
that Pasteur and others established the 
role of the transmission of specific 
pathogens in what became known as the 
“infectious diseases”, and it was another 
century, in most instances, before 
effective vaccines or antibiotic 
treatments became available. 
Nevertheless, a dramatic decline in 
mortality from these diseases occurred 
from the mid-nineteenth century long 
before the development of modern 
pharmaceuticals. This has been 
attributed to improvements in nutrition, 
sanitation, and general living conditions 
(McKeown, 1979) although it has been 
argued that specific public health 
interventions on factors such as urban 
congestion actually played the major role 
(Szreter, 1988). 

 

1.2 Risk Factor Epidemiology 

This decline in the importance of 
communicable disease was accompanied 
by an increase in morbidity and mortality 
from non-communicable diseases such 
as heart disease, cancer, diabetes, and 
respiratory disease. This led to major 
developments in the theory and practice 
of epidemiology, particularly in the 
second half of the 20th century. There 
has been a particular emphasis on 
aspects of individual lifestyle (diet, 
exercise, etc) and in the last decade the 

human genome project has seen an 
accelerated interest in the role of genetic 
factors (Beaty and Khoury, 2000). 

Thus, epidemiology became widely 
recognized with the establishment of the 
link between tobacco smoking as a cause 
of lung cancer in the early 1950's (Doll 
and Hill, 1950; Wynder and Graham, 
1950), although this association had 
already been established in Germany in 
the 1930s (Schairer and Schöninger, 
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2001). Subsequent decades have seen 
major discoveries relating to other 
causes of chronic disease such as 
asbestos, ionizing radiation, viruses, 
diet, outdoor air pollution, indoor air 
pollution, water pollution, and genetic 
factors. These epidemiologic successes 
have in some cases led to successful 
preventive interventions without the 
need for major social or political change. 
For example, occupational carcinogens 
can, with some difficulty, be controlled 
through regulatory measures, and 
exposures to known occupational 
carcinogens have been reduced in 
industrialized countries in recent 
decades. Another example is the 
successful World Health Organisation 
(WHO) campaign against smallpox. More 
recently, some countries have passed 
legislation to restrict advertising of 
tobacco and smoking in public places 
and have adopted health promotion 
programmes aimed at changes in 
"lifestyle". 

Individual lifestyle factors would ideally 
be investigated using a randomised 
controlled trial, but this is often unethical 
or impractical (e.g. tobacco smoking). 
Thus, it is necessary to do observational 
studies and epidemiology has made 
major contributions to the understanding 
of the role of individual lifestyle factors 
and health. Because such factors would 
ideally be investigated in randomised 
controlled trials, and in fact would be 
ideally suited to such trials if it were not 

for the ethical and practical constraints, 
epidemiologic theory and practice has, 
quite appropriately, been based on the 
theory and practice of randomised trials. 
Thus, the aim of an epidemiologic study 
investigating the effect of a specific risk 
factor (e.g. smoking) on a particular 
disease (e.g. lung cancer) is intended to 
obtain the same findings that would have 
been obtained from a randomised 
controlled trial. Of course, an 
epidemiologic study will usually 
experience more problems of bias than a 
randomised controlled trial, but the 
randomised trial is the “gold standard”. 

This approach has led to major 
developments in epidemiologic theory 
(presented most elegantly and 
comprehensively in Rothman and 
Greenland, 1998). In particular, there 
have been major developments in the 
theory of cohort studies (which mimic a 
randomised trial, but without the 
randomisation) and case-control studies 
(which attempt to obtain the same 
findings as a full cohort study, but in a 
more efficient manner). It is these basic 
methods, which follow a randomised 
controlled trial “paradigm”, which receive 
most of the attention in this short 
introductory text. However, while 
presenting these basic methods, it is 
important to also recognise their 
limitations, and to also consider different 
or more complex methods that may be 
more appropriate when epidemiology is 
used in the public health context.

1.3 Epidemiology in the 21st Century 

In particular, in the last decade there 
has been increasing concern expressed 
about the limitations of the risk factor 
approach, and considerable debate about 

the future direction of epidemiology 
(Saracci, 1999). In particular, it has 
been argued that there has been an 
overemphasis on aspects of individual 
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lifestyle, and little attention paid to the 
population-level determinants of health 
(Susser and Susser, 1996a, 1996b; 
Pearce, 1996; McMichael, 1999). 
Furthermore, the success of risk factor 
epidemiology has been more temporary 
and more limited than might have been 
expected. For example, the limited 
success of legislative measures in 
industrialised countries has led the 
tobacco industry to shift its promotional 
activities to developing countries so that 
more people are exposed to tobacco 
smoke than ever before (Barry, 1991; 
Tominaga, 1986). Similar shifts have 
occurred for some occupational 
carcinogens (Pearce et al, 1994). Thus, 
on a global basis the "achievement" of 
the public health movement has often 
been to move public health problems 
from rich countries to poor countries and 
from rich to poor populations within the 
industrialized countries. 

It should be acknowledged that not all 
epidemiologists share these concerns 
(e.g. Savitz, 1994; Rothman et al, 1998; 
Poole and Rothman, 1998), and some 
have regarded these discussions as an 
attack on the field itself, rather than as 
an attempt to broaden its vision. 
Nevertheless, the debate has progressed 
and there is an increasing recognition of 
the importance of taking a more global 
approach to epidemiologic research and 
of the importance of maintaining an 
appropriate balance and interaction 
between macro-level (population), 
individual-level (e.g. lifestyle), and 
micro-level (e.g. genetic) research 
(Pearce, 2004).  

There are three crucial concepts which 
have received increasing attention in this 
regard. 

The Importance of Context 

The first, and most important issue, is 
the need to consider the population 
context when conducting epidemiologic 

studies. Even if one is focusing on 
individual “lifestyle” risk factors, there is 
good reason to conduct studies at the 
population level (Rose, 1992). Moreover, 
every population has its own history, 
culture, and economic and social 
divisions which influence how and why 
people are exposed to specific risk 
factors, and how they respond to such 
exposures. For example, New Zealand 
(Aotearoa) was colonised by Great 
Britain more than 150 years ago, 
resulting in major loss of life by the 
indigenous people (the Māori). It is 
commonly assumed that this loss of life 
occurred primarily due to the arrival of 
infectious diseases to which Māori had no 
natural immunity. However, a more 
careful analysis of the history of 
colonisation throughout the Pacific 
reveals that the indigenous people 
mainly suffered major mortality from 
imported infectious diseases when their 
land was taken (Kunitz, 1994), thus 
disrupting their economic base, food 
supply and social networks. This 
example is not merely of historical 
interest, since it these same infectious 
diseases that have returned in strength 
in Eastern Europe in the last decade, 
after lying dormant for nearly a century 
(Bobak and Marmot, 1996). Similarly, 
the effects of occupational carcinogens 
may be greater in developing countries 
where workers may be relatively young 
or may be affected by malnutrition or 
other diseases (Pearce et al, 1994).  

These issues are likely to become more 
important because, not only is 
epidemiology changing, but the world 
that epidemiologists study is also rapidly 
changing. We are seeing the effects of 
economic globalization, structural 
adjustment (Pearce et al, 1994) and 
climate change (McMichael, 1993, 1995), 
and the last few decades have seen the 
occurrence of the “informational 
revolution” which is having effects as 
great as the previous agricultural and  
industrial revolutions (Castells, 1996).  
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In industrialized countries, this is likely 
to prolong life expectancy for some, 
but not all, sections of the population. 
In developing countries, the benefits 
have been even more mixed (Pearce et 
al, 1994), while the countries of 
Eastern Europe are experiencing the 
largest sudden drop in life expectancy 
that has been observed in peacetime 
in recorded human history (Boback 
and Marmot, 1996) with a major rise 
in alcoholism and “forgotten” diseases 
such as tuberculosis and cholera. 

This increased interest in population-
level determinants of health has been 
particularly marked by increased 
interest in techniques such as 
multilevel modelling which allow 
individual lifestyle risk factors to be 
considered “in context” and in parallel 
with macro-level determinants of 
health (Greenland, 2000). Such a shift 
in approach is important, not only 
because of the need to emphasize the 
role of diversity and local knowledge 
(Kunitz, 1994), but also because of the 
more general moves within science to 
consider macro-level systems and 
processes (Cohen and Stewart, 1994) 
rather than taking a solely reductionist 
approach (Pearce, 1996). 

Problem-Based Epidemiology 

A second issue is that a problem-based 
approach may be particularly valuable 
in encouraging epidemiologists to 
focus on the major public health 
problems and to take the population 
context into account (Pearce, 2001; 
Thacker and Buffington, 2001). A 
problem-based approach to teaching 
clinical medicine has been increasingly 
adopted in medical schools around the 
world. The value of this approach is 
that theories and methods are taught 
in the context of solving real-life 
problems. Starting with “the problem” 
at the population level provides a 
“reality check” on existing etiological 

theories and identifies the major public 
health problems which new theories 
must be able to explain. A fruitful 
research process can then be 
generated with positive interaction 
between epidemiologists and other 
researchers. Studying real public 
health problems in their historical and 
social context does not exclude 
learning about sophisticated methods 
of study design and data analysis (in 
fact, it necessitates it), but it may help 
to ensure that the appropriate 
questions are asked (Pearce, 1999). 

Appropriate Technology 

A related issue is the need to use 
“appropriate technology” to address 
the most important public health 
research questions. In particular, as 
attention moves “upstream” to the 
population level (McKinlay, 1993) new 
methods will need to be developed 
(McMichael, 1995). One example of 
this, noted above, is the recent rise in 
interest in multilevel modelling 
(Blakely and Woodward, 2000; Pearce, 
2000), although it is important to 
stress that it is an increase in 
“multilevel thinking” in the 
development of epidemiologic 
hypotheses and the design of studies 
that is required, rather than just the 
use of new statistical techniques of 
data analysis. The appropriateness of 
any research methodology depends on 
the phenomenon under study: its 
magnitude, the setting, the current 
state of theory and knowledge, the 
availability of valid measurement tools, 
and the proposed uses of the 
information to be gathered, as well as 
the community resources and skills 
available and the prevailing norms and 
values at the national, regional or local 
level (Pearce and McKinlay, 1998). 
Thus, there has been increased 
interest in the interface between 
epidemiology and social science 
(Krieger, 2000), and in the 
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development of theoretical and 
methodological frameworks 
appropriate for epidemiologic studies 
in developing countries (Barreto et al, 
2001; Barreto, 2004; Loewenson, 
2004), and in indigenous people in 
“Western “ countries (Durie, 2004). As 

noted above, this short introductory 
text focuses on the most basic 
epidemiologic methods, but I attempt 
to refer to more complex issues, and 
the potential use of more complex 
methods, where this is appropriate.

Summary 

Public health is primarily concerned with 
the prevention of disease in human 
populations, and epidemiology is the 
branch of public health which attempts 
to discover the causes of disease in 
order to make disease prevention 
possible. It thus differs from clinical 
medicine both in its emphasis on 
prevention (rather than treatment) and 
in its focus on populations (rather than 
individual patients). Thus, the 
epidemiological approach to a particular 
disease is intended to identify high-risk 
subgroups within the population, to 
determine the causes of such excess 
risks, and to determine the effectiveness 
of subsequent preventive measures. 
Although the epidemiological approach 
has been used for more than a century 
for the study of communicable diseases, 
epidemiology has considerably grown in 
scope and sophistication in the last few 
decades as it has been increasingly 

applied to the study of non-
communicable diseases. At the beginning 
of the 21st century, the field of 
epidemiology is changing rapidly, not 
only with regards to its basic methods, 
but also with regards to the hypotheses 
which these methods are used to 
investigate. In particular, in recent years 
there has been a revival in public health 
applications of epidemiology, not only at 
the national level, but also at the 
international level, as epidemiologists 
tackle global problems such as climate 
change. This text does not attempt to 
review the more complex methods used 
to study such issues. However, it does 
provide a coherent and systematic 
summary of the basic methods in the 
field, which can be used as a logical base 
for the teaching and development of 
research into these more complex 
issues.
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CHAPTER 2. Incidence Studies 
(In: Pearce N. A Short Introduction to Epidemiology. 2nd ed. Wellington, CPHR, 2005) 

In this chapter and the next one I review 
the possible study designs for the simple 
situation where individuals are exposed to 
a particular risk factor (e.g. a particular 
chemical) and when a dichotomous 
outcome is under study (e.g. being alive or 
dead, or having or not having a particular 
disease). Thus, the aim is to estimate the 
effect of a (dichotomous) exposure on the 
occurrence of a (dichotomous) disease 
outcome or health state. 

It should first be emphasized that all 
epidemiologic studies are (or should be) 
based on a particular source population 
(also called the “study population” or “base 
population”) followed over a particular risk 
period. Within this framework a 
fundamental distinction is between studies 
of disease incidence (i.e. the number of 
new cases of disease over time) and 
studies of disease prevalence (i.e. the 
number of people with the disease at a 
particular point in time). Studies involving 
dichotomous outcomes can then be 
classified according to two questions: 
 
a. Are we studying studying incidence or 

prevalence?; 
b. Is there sampling on the basis of 

outcome?  

The responses to these two questions yield 
four basic types of epidemiologic studies 
(Morgenstern and Thomas, 1993; Pearce, 
1998): 
 
1. Incidence studies 
2. Incidence case-control studies 
3. Prevalence studies 
4. Prevalence case-control studies  

These four study types represent cells in a 
two-way cross-classification (table 2.1). 
Such studies may be conducted to describe 
the occurrence of disease (e.g. to estimate 
the burden of diabetes in the community 
by conducting a prevalence survey), or to 
estimate the effect of a particular exposure 
on disease (e.g. to estimate whether the 
incidence new cases of diabetes is greater 
in people with a high fat diet than in 
people with a low fat diet) in order to find 
out how we can prevent the disease 
occurring. In the latter situation we are 
comparing the occurrence of disease in an 
“exposed” group with that in a “non-
exposed” group, and we are estimating the 
effect of exposure on the occurrence of the 
disease, while controlling for other known 
causes of the disease. 

 

Table 2.1 

The four basic study types in studies involving a dichotomous health outcome 
 
 Sampling on outcome 
 ------------------------------------------------------------ 
 No Yes 
 ------------------------------------------------------------ 
Study Incidence Incidence studies Incidence case-control studies 
outcome       
 Prevalence Prevalence studies Prevalence case-control studies 
    ------------------------------------------------------------ 
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Thus, we might conclude that “lung 
cancer is five times more common in 
asbestos workers than in other workers, 
even after we have controlled for 
differences in age, gender, and 
smoking”. In some instances we may 
have multiple categories of exposure 
(high, medium, low) or individual 
exposure “scores”, but we will start with 
the simple situation in which individuals 
are classified as “exposed” or “non-
exposed”. 

In this chapter I discuss incidence 
studies, and in the following chapter I 

consider prevalence studies.  In chapter 
4, I then consider studies involving more 
complex measurements of health status 
(e.g. continuous lung function or blood 
pressure measurements) and more 
complex study designs (ecologic and 
multilevel studies). As noted in chapter 
1, the latter situation is perhaps the 
norm, rather than the exception, when 
conducting studies in the public health 
context. However, for logical and 
practical reasons I will first address the 
simpler situation of a dichotomous 
exposure (in individuals) and a 
dichotomous health outcome measure. 

2.1 Incidence Studies 

The most comprehensive approach 
involves collecting data on the 
experience of the entire source 
population over the risk period in order 
to estimate disease incidence (the 
development of a disease for the first 
time) or mortality (i.e. death which is a 
particular type of incidence measure). 
Figure 2.1 shows the experience of a 
source population in which all persons 
are followed from a particular date. For 
simplicity, I will initially assume that the 
source population is confined to persons 
born in a particular year, i.e. a birth 
cohort. In the hypothetical study shown 
in figure 2.1, the outcome under study is 
the "event" of developing a particular 
disease. However, the concept of 
incidence applies equally to studies of 
other health events, such as 
hospitalisation or death. The key feature 
of incidence studies is that they involve 
an event (e.g. developing a disease for 
the first time) which occurs at a 
particular point in time, rather than a 
state (e.g. having a disease) which can 
exist over an extended period of time. 

In the hypothetical study shown in figure 
2.1, people enter the study when they 
are born, and some of them 
subsequently develop disease. Of these, 
some subsequently "lose" their disease 
(although they may "regain" it at a later 
date), and some have the condition all 
their lives; some persons die from the 
disease under study, but most eventually 
die from another cause. However, the 
information is "censored" since the study 
cannot last indefinitely; i.e. follow-up 
stops by a particular age, at which time 
some members of the study population 
have died, and some have been lost to 
follow-up for other reasons (e.g. 
emigration). For example, several people 
in figure 2.1 were “censored” before 
follow-up finished, either because they 
died of the disease we were studying (if 
we were studying the incidence of 
disease, rather than deaths, they would 
be “censored” as soon as they developed 
the disease), they died of something 
else, or because they were “lost to 
follow-up”. Each person only contributes 
“person-time” to the study until they are 

 22



censored, and after that we stop 
counting them. This approach is followed 
because we may not get a fair 
comparison between the “exposed” and 
the “non-exposed” groups” if they have 
been followed for different lengths of 
time, e.g. if one group has many more 
people lost to follow-up than the other 
group.  
 
However, the person-time approach 
would be necessary even if no-one was 
lost to follow up and both groups were 
followed for the same length of time. For 
example, consider a cohort study of 
1,000 exposed and 1,000 non-exposed 
people in which no-one was lost to 
follow-up and everyone was followed 
until they died. Assume also that the 
exposure causes some deaths so the 
exposed group, on the average, died at a 

younger age than the non-exposed 
group. If we only calculated the 
percentage of people who died, then it 
would be 100% in both groups, and we 
would see no difference. However, if we 
take into account the person-time 
contributed by each group, then it 
becomes clear that both groups had the 
same number of deaths (1,000), but that 
in the exposed group these deaths 
occurred earlier and the person-time 
contributed was therefore lower. Thus, 
the average age at death would be lower 
in the exposed group; to say the same 
thing another way, the death rate 
(deaths divided by person-years) would 
be higher. To see this, we need to 
consider not only how many people were 
in each group, but how much person-
time they contributed, i.e. how long they 
were followed for. 

 

Figure 2.1 

Occurrence of disease in a hypothetical population followed from birth 
 

 

Birth End of Follow up 
death from disease under study 

other death 
lost to follow up 

“at risk” 

disease symptoms 

severe symptoms 
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Example 2.1 

Martinez et al (1995) 
studied 1246 newborns 
in the Tucson, Arizona 
area enrolled between 
May 1980 and October 
1984. Parents were 
contacted shortly after 
the children were born, 
and completed a 
questionnaire about their 
history or respiratory 
illness, smoking habits, 
and education. Further 
parental questionnaires 

were completed during 
the child’s second year 
of life and again at six 
years. At the age of six 
years, 51.5% of the 
children had never 
wheezed, 19.9% had 
had at least one lower 
respiratory tract illness 
with wheezing during the 
first three years of life 
but had no wheezing at 
six years, 15.0% had no 
wheezing before the age 

of three years but had 
wheezing at six years, 
and 13.7% had 
wheezing both before 
three years of age and 
at six years. The authors 
concluded that the 
majority of infants with 
wheezing have transient 
conditions and do not 
have increased risks of 
asthma or allergies later 
in life.

 
In some circumstances, a study might 
be conducted to study the "natural 
history" of a disease (e.g. diabetes). In 
such “clinical epidemiology” studies, 
the population (denominator) under 
study comprises people who already 
have a particular disease or condition, 
and the goal is to ascertain which 
factors affect the disease prognosis. 
More typically, one might be interested 
in a particular hypothesis about 
developing disease, such as "a high 
cholesterol diet increases the risk of 
developing ischaemic heart disease". 
In this situation, the population under 
study comprises healthy individuals 
and we are interested in factors that 
determine who develops the disease 
under study (and who doesn’t). The 
data generated by such an incidence 
study involve comparing “exposed” 
and “non-exposed” groups and are 
similar to that generated by a 
randomised controlled trial, except 
that dietary “exposure” has not been 
randomly allocated. 
 
Incidence studies ideally measure 
exposures, confounders and outcome 
times on all population members. 
When the source population has been 

formally defined and enumerated (e.g. 
a group of workers exposed to a 
particular chemical) then the study 
may be termed a cohort study or 
follow-up study (Rothman and 
Greenland, 1998) and the former 
terminology will be used here. 
Incidence studies also include studies 
where the source population has been 
defined but a cohort has not been 
formally enumerated by the 
investigator. Perhaps the most 
common examples are descriptive 
studies, e.g. of national death rates. In 
fact, as Rothman and Greenland 
(1998) note, no qualitative distinction 
distinguishes “descriptive” variables 
from the variables that are studied in 
“analytic” studies of risk factors. Thus, 
the distinction between “descriptive” 
incidence studies and “analytic” 
incidence studies is at best only a 
distinction based on data source (e.g. 
obtaining information from routine 
records rather than collecting the 
information specifically for the study). 
 
Similarly, there is no fundamental 
distinction between incidence studies 
based on a broad population (e.g. all 
workers at a particular factory, or all 

 24



persons living in a particular 
geographical area) and incidence 
studies involving sampling on the basis 
of exposure, since the latter procedure 
merely redefines the source population 
(cohort) (Miettinen, 1985). 

Measures of Disease Occurrence 

I will briefly review the basic measures 
of disease occurrence that are used in 
incidence studies, using the notation 
depicted in table 2.2 which shows the 
findings of a hypothetical incidence 
study of 20,000 persons followed for 
10 years (statistical analyses using 
these measures are discussed further 
in chapter 12). 

Three measures of disease incidence 
are commonly used in incidence 
studies. 

Perhaps the most common measure of 
disease occurrence is the person-time 
incidence rate (or hazard rate, force of 
mortality or incidence density 
(Miettinen, 1985)) which is a measure 
of the disease occurrence per unit 
population time, and has the reciprocal 
of time as its dimension. In this 
example (table 2.2), there were 952 
cases of disease diagnosed in the non-
exposed group during the ten years of 
follow-up, which involved a total of 
95,163 person-years; this is less than 
the total possible person-time of 
100,000 person-years since people 
who developed the disease before the 
end of the ten-year period were no 
longer “at risk” of developing it, and 
stopped contributing person-years at 
that time (for simplicity I have ignored 
the problem of people whose disease 
disappears and then reoccurs over 
time, and I have assumed that we are 
studying the incidence of the first 
occurrence of disease). Thus, the 
incidence rate in the non-exposed 
group (b/Y

0
) was 952/95,163 = 

0.0100 (or 1000 per 100,000 person-
years). 

A second measure of disease 
occurrence is the incidence proportion 
or average risk which is the proportion 
of people who experience the outcome 
of interest at any time during the 
follow-up period (the incidence 
proportion is often called the 
cumulative incidence, but the latter 
term is also used to refer to 
cumulative hazards (Breslow and Day, 
1987)). Since it is a proportion it is 
dimensionless, but it is necessary to 
specify the time period over which it is 
being measured.  In this instance, 
there were 952 incident cases among 
the 10,000 people in the non-exposed 
group, and the incidence proportion 
(b/N

0
) was therefore 952/10,000 = 

0.0952 over the ten year follow-up 
period. When the outcome of interest 
is rare over the follow-up period (e.g. 
an incidence proportion of less than 
10%), then the incidence proportion is 
approximately equal to the incidence 
rate multiplied by the length of time 
that the population has been followed 
(in the example, this product is 0.1000 
whereas the incidence proportion is 
0.0952). I have assumed, for 
simplicity, that no-one or was lost to 
follow-up during the study period (and 
therefore stopped contributing person-
years to the study). However, as noted 
above when this assumption is not 
valid (i.e. when a significant proportion 
of people have died or have been lost 
to follow-up), then the incidence 
proportion cannot be estimated 
directly, but must be estimated 
indirectly from the incidence rate 
(which takes into account that follow-
up was not complete) or from life 
tables (which stratify on follow-up 
time). 
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A third possible measure of disease 
occurrence is the incidence odds 
(Greenland, 1987) which is the ratio of 
the number of people who experience 
the outcome (b) to the number of 
people who do not experience the 
outcome (d). As for the incidence 
proportion, the incidence odds is 
dimensionless, but it is necessary to 
specify the time period over which it is 
being measured. In this example, the 
incidence odds (b/d) is 952/9,048 = 
0.1052. When the outcome is rare 
over the follow-up period then the 
incidence odds is approximately equal 
to the incidence proportion. Once 
again, if loss to follow-up is significant, 
then the incidence odds cannot be 
estimated directly, but must be 

estimated indirectly from the incidence 
rate (via the incidence proportion, or 
via life-table methods). The incidence 
odds is not very interesting or useful 
as a measure of disease occurrence, 
but it is presented here because the 
incidence odds is used to calculate the 
incidence odds ratio which is estimated 
in certain case-control studies (see 
below). 

These three measures of disease 
occurrence all involve the same 
numerator: the number of incident 
cases of disease (b). They differ in 
whether their denominators represent 
person-years at risk (Y

0
), persons at 

risk (N
0
), or survivors (d).

 

Table 2.2 

 
Findings from a hypothetical cohort study of 20,000 persons followed for 10 years 
 
 Exposed Non-exposed    Ratio 
------------------------------------------------------------------------------------------------ 
Cases 1,813 (a) 952 (b) 
Non-cases 8,187 (c) 9,048 (d) 
------------------------------------------------------------------------------------------------ 
Initial population size 10,000 (N1) 10,000 (N0) 
------------------------------------------------------------------------------------------------ 
Person-years 90,635 (Y1) 95,163 (Y0) 
------------------------------------------------------------------------------------------------ 
Incidence rate 0.0200 (I1) 0.0100 (I0) 2.00 
Incidence proportion 0.1813 (R1) 0.0952 (R0) 1.90 
    (average risk) 
Incidence odds 0.2214 (O1) 0.1052 (O0) 2.11 
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Measures of Effect in Incidence 
Studies 

Corresponding to these three measures 
of disease occurrence, there are three 
principal ratio measures of effect which 
can be used in incidence studies. The 
measure of interest is often the rate 
ratio (incidence density ratio), the ratio 
of the incidence rate in the exposed 
group (a/Y

1
) to that in the non-exposed 

group (b/Y
0
). In the example in table 

2.2, the incidence rates are 0.02 per 
person-year in the exposed group and 
0.01 per person-year in the non-exposed 
group, and the rate ratio is therefore 
2.00. 

A second commonly used effect measure 
is the risk ratio (incidence proportion 
ratio or cumulative incidence ratio) which 
is the ratio of the incidence proportion in 
the exposed group (a/N1) to that in the 
non-exposed group (b/N0). In this 
example, the risk ratio is 0.1813/0.0952 
= 1.90. When the outcome is rare over 
the follow-up period the risk ratio is 
approximately equal to the rate ratio. 

A third possible effect measure is the 
incidence odds ratio which is the ratio of 
the incidence odds in the exposed group 
(a/c) to that in the non-exposed group 
(b/d). In this example the odds ratio is 
0.2214/0.1052 = 2.11. When the 
outcome is rare over the study period 
the incidence odds ratio is approximately 
equal to the incidence rate ratio. 

These three multiplicative effect 
measures are sometimes referred to 
under the generic term of relative risk. 
Each involves the ratio of a measure of 
disease occurrence in the exposed group 

to that in the non-exposed group. The 
various measures of disease occurrence 
all involve the same numerators 
(incident cases), but differ in whether 
their denominators are based on person-
years, persons, or survivors (people who 
do not develop the disease at any time 
during the follow-up period). They are all 
approximately equal when the disease is 
rare during the follow-up period (e.g. an 
incidence proportion of less than 10%). 
However, the odds ratio has been 
severely criticised as an effect measure 
(Greenland, 1987; Miettinen and Cook, 
1981), and has little intrinsic meaning in 
incidence studies, but it is presented 
here because it is the standard effect 
measure in incidence case-control 
studies (see below).  

Finally, it should be noted that an 
analogous approach can be used to 
calculate measures of effect based on 
differences rather than ratios, in 
particular the rate difference and the risk 
difference. Ratio measures are usually of 
greater interest in etiologic research, 
because they have more convenient 
statistical properties, and it is easier to 
assess the strength of effect and the 
possible role of various sources of bias 
when using ratio measures (Cornfield et 
al, 1951). Thus, I will concentrate on the 
use of ratio measures in the remainder 
of this text. However, other measures 
(e.g. risk difference, attributable 
fraction) may be of value in certain 
circumstances, such as evaluating the 
public health impact of a particular 
exposure, and I encourage readers to 
consult standard texts for a 
comprehensive review of these measures 
(e.g. Rothman and Greenland, 1998). 
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2.2. Incidence Case-Control Studies 

Incidence studies are the most 
comprehensive approach to studying the 
causes of disease, since they use all of 
the information about the source 

same population over the same period 
(the possible methods of sampling 
controls are described below). 
population over the risk period. 
However, they are very expensive in 
terms of time and resources. For 
example, the hypothetical study 
presented in table 2.2 would involve 
enrolling 20,000 people and collecting 
exposure information (on both past and 
present exposure) for all of them. The 
same findings can be obtained more 
efficiently by using a case-control 
design. 

An incidence case-control study involves 
studying all (or a sample) of the incident 
cases of the disease that occurred in the 
source population over the risk period, 
and a control group sampled from the 

Table 2.3 shows the data from a 
hypothetical case-control study, which 
involved studying all of the 2,765 
incident cases which would have been 
identified in the full incidence study, and 
a sample of 2,765 controls (one for each 
case). Such a case-control study would 
achieve the same findings as the full 
incidence study, but would be much 
more efficient, since it would involve 
ascertaining the exposure histories of 
5,530 people (2,765 cases and 2,765 
controls) rather than 20,000. When the 
outcome under study is very rare, an 
even more remarkable gain in efficiency 
can be achieved with very little reduction 
in the precision of the effect estimate.

Table 2.3 
 
Findings from a hypothetical incidence case-control study based on the cohort in table 2.2 
  
 Exposed Non-exposed Odds Ratio 
----------------------------------------------------------------------------------------------------- 
Cases 1,813 (a) 952 (b) 
Controls: from survivors  
 (cumulative sampling) 1,313 (c) 1,452 (d) 2.11 
 from source population  
 (case-cohort sampling) 1,383 (c) 1,383 (d) 1.90 
 from person-years  
 (density sampling) 1,349 (c) 1,416 (d) 2.00 
------------------------------------------------------------------------------------------------------------------
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Measures of Effect in Incidence 
Case-Control Studies 

In case-control studies, the relative risk 
is estimated using the odds ratio. 

Suppose that a case-control study is 
conducted in the study population shown 
in table 2.2; such a study might involve 
all of the 2,765 incident cases and a 
group of 2,765 controls (table 2.3). The 
effect measure which the odds ratio 
obtained from this case-control study will 
estimate depends on the manner in 
which controls are selected. Once again, 
there are three main options (Miettinen, 
1985; Pearce, 1993; Rothman and 
Greenland, 1998). 

One option, called cumulative (or 
cumulative incidence) sampling, is to 
select controls from those who do not 
experience the outcome during the 
follow-up period, i.e. the survivors 
(those who did not develop the disease 
at any time during the follow-up period). 
In this instance, the ratio of exposed to 
non-exposed controls will estimate the 
exposure odds (c/d = 8178/9048 = 
1313/1452) of the survivors, and the 
odds ratio obtained in the case-control 
study will therefore estimate the 
incidence odds ratio in the source 
population over the study period (2.11). 
Early presentations of the case-control 
approach usually assumed this context 
(Cornfield, 1951), and it was emphasised 
that the odds ratio was approximately 
equal to the risk ratio when the disease 
was rare. 

It was later recognised that controls can 
be sampled from the entire source 
population (those at risk at the 
beginning of follow-up), rather than just 
from the survivors (those at risk at the 
end of follow-up).  This approach which 
was previously used by Thomas (1972) 
and Kupper et al (1975), has more 

recently been termed case-cohort 
sampling (Prentice, 1986), or case-base 
sampling (Miettinen, 1982). In this 
instance, the ratio of exposed to non-
exposed controls will estimate the 
exposure odds in the source population 
of persons at risk at the start of follow-
up (N1/N0 = 10000/10000 = 
1383/1383), and the odds ratio obtained 
in the case-control study will therefore 
estimate the risk ratio in the source 
population over the study period (1.90). 
In this instance the method of calculation 
of the odds ratio is the same as for any 
other case-control study, but minor 
changes are needed in the standard 
methods for calculating confidence 
intervals and p-values to take into 
account that some cases may also be 
selected as controls (Greenland, 1986). 

The third approach is to select controls 
longitudinally throughout the course of 
the study (Sheehe, 1962; Miettinen, 
1976); this is sometimes described as 
risk-set sampling (Robins et al, 1986), 
sampling from the study base (the 
person-time experience) (Miettinen, 
1985), or density sampling (Kleinbaum 
et al, 1982). In this instance, the ratio of 
exposed to non-exposed controls will 
estimate the exposure odds in the 
person-time (Y1/Y0 = 90635/95613 = 
1349/1416), and the odds ratio obtained 
in the case-control study will therefore 
estimate the rate ratio in the study 
population over the study period (2.00).  

Case-control studies have traditionally 
been presented in terms of cumulative 
sampling (e.g. Cornfield, 1951), but 
most case-control studies actually 
involve density sampling (Miettinen, 
1976), often with matching on a time 
variable such as calendar time or age, 
and therefore estimate the rate ratio 
without the need for any rare disease 
assumption (Sheehe, 1962; Miettinen, 
1976; Greenland and Thomas, 1982). 

 29



Example 2.2

Gustavsson et al (2001) 
studied the risk of 
myocardial infarction 
from occupational 
exposure to motor 
exhaust, other 
combustion products, 
organic solvents, lead, 
and dynamite. They 
identified first-time, 
nonfatal myocardial 
infarctions among men 
and women aged 45-70 

years in Stockholm 
County from 1992-1994. 
They selected controls 
from the general 
population living in the 
same County during the 
same period (i.e. density 
matching), matched for 
sex, age, year, and 
hospital catchment area. 
The odds ratio 
(estimating the rate 
ratio) of myocardial 

infarction was 2.11 
(95% CI 1.23-3.60) 
among those highly 
exposed occupationally, 
and 1.42 (95% CI 1.05-
1.92) in those 
moderately exposed, 
compared with persons 
not occupationally 
exposed to combustion 
products from organic 
material. 

Summary 

When a dichotomous outcome is under 
study (e.g. being alive or dead, or 
having or not having a disease) a 
fundamental distinction is between 
studies of incidence and studies of 
prevalence. Thus, four main types of 
studies can be identified: incidence 
studies, incidence case-control studies, 
prevalence studies, and prevalence case-
control studies (Morgenstern and 
Thomas, 1993; Pearce, 1998). These 
various study types differ according to 
whether they involve incidence or 
prevalence data and whether or not they 
involve sampling on the basis of the 
outcome under study. Incidence studies 
involve collecting and analysing data on 

the exposure and disease experience of 
the entire source population. They may 
resemble randomized trials, but they 
may involve additional problems of 
confounding because exposure has not 
been randomly assigned. The other 
potential study designs all involve 
sampling from the source population, 
and therefore may include additional 
biases arising from the sampling process 
(chapter 6). In particular, incidence 
case-control studies involve sampling on 
the basis of outcome, i.e. they usually 
involve all incident cases generated by 
the source population and a control 
group (of non-cases) sampled at random 
from the source population.
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CHAPTER 3. Prevalence Studies 

(In: Pearce N. A Short Introduction to Epidemiology. 2nd ed. Wellington, CPHR, 2005)

Incidence studies are ideal for studying 
events such as mortality or cancer 
incidence, since they involve collecting 
and analysing all of the relevant 
information on the source population and 
we can get better information on when 
exposure and disease occurred. 
However, incidence studies involve 
lengthy periods of follow-up and large 
resources, in terms of both time and 
funding, and it may be difficult to 
identify incident cases of non-fatal 
chronic conditions such as diabetes. 
Thus, in some settings (e.g. some 
developing countries) and/or for some 

conditions (e.g. chronic non-fatal 
disease) prevalence studies are the only 
option. Furthermore, in some instances 
we may be more interested in factors 
which affect the current burden of 
disease in the population. Consequently, 
although incidence studies are usual 
preferable, there is also an important 
role for prevalence studies, both for 
practical reasons, and because such 
studies enable the assessment of the 
level of morbidity and the population 
“disease burden” for a non-fatal 
condition. 

3.1. Prevalence Studies

The term prevalence denotes the 
number of cases of the disease under 
study existing in the source population at 
a particular time. This can be defined as 
point prevalence estimated at one point 
in time, or period prevalence which 
denotes the number of cases that 
existed during some time interval (e.g. 
one year).  

The prevalence is a proportion, and the 
statistical methods for calculating a 
confidence interval for the prevalence 
are identical to those presented above 
for calculating a confidence interval for 
the incidence proportion (chapter 12). 

In some instances, the aim of a 
prevalence study may simply be to 
compare the disease prevalence among 

a specific population with that in other 
communities or countries. This may be 
done, for example, in order to discover 
differences in disease prevalence and to 
thus suggest possible risk factors for the 
disease. These further studies may 
involve testing specific hypotheses by 
comparing prevalence in subgroups of 
people who have or have not been 
exposed to a particular risk factor (e.g. 
as passive smoking) in the past. 

Prevalence studies often represent a 
considerable saving in resources 
compared with incidence studies, since it 
is only necessary to evaluate disease 
prevalence at one point in time, rather 
than continually searching for incident 
cases over an extended period of time. 
On the other hand, this gain in efficiency 
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is achieved at the cost of greater risk of 
biased inferences, since it may be much 
more difficult to understand the temporal 
relationship between various exposures 
and the occurrence of disease. For 
example, an exposure that increases the 
risk of death in people with pre-existing 

chronic heart disease will be negatively 
associated with the prevalence of heart 
disease (in people who are alive!), and 
will therefore appear to be ‘protective’ 
against heart disease in a prevalence 
study. 

Example 3.1

The International Study 
of Asthma and Allergies 
in Childhood (ISAAC) 
(Asher et al, 1995; 
Pearce et al, 1993) 
involved a simple Phase 
I global asthma 
symptom prevalence 
survey and a more in-
depth Phase II survey. 
The emphasis was on 
obtaining the maximum 
possible participation 
across the world in order 
to obtain a global 
overview of childhood 
asthma prevalence, and 
the Phase I 
questionnaire modules 
were designed to be 
simple and to require 
minimal resources to 
administer. In addition, 
a video questionnaire 
involving the audio-
visual presentation of 
clinical signs and 
symptoms of asthma 
was developed in order 
to minimise translation 
problems. The 
population of interest 
was schoolchildren aged 
6-7 years and 13-14 

years within specified 
geographical areas. The 
older age-group was 
chosen to reflect the 
period when morbidity 
from asthma is common 
and to enable the use of 
self-completed 
questionnaires. The 
younger age-group was 
chosen to give a 
reflection of the early 
childhood years, and 
involves parent-
completion of 
questionnaires. The 
Phase I findings, 
involving more than 
700,000 children, 
showed striking 
international differences 
in asthma symptom 
prevalence (ISAAC 
Steering Committee, 
1998a, 1998b). Figure 
3.1 shows the findings 
for current wheeze (i.e. 
wheeze in the previous 
12 months). There are a 
number of interesting 
features of the figure: (i) 
there is a particularly 
high prevalence of 
reported asthma 

symptoms in English-
speaking countries; (ii) 
centres in Latin America 
also had particularly high 
symptom prevalence; 
(iii) there is also high 
asthma prevalence in 
Western Europe, with 
lower prevalences in 
Eastern and Southern 
Europe - for example, 
there is a clear 
Northwest-Southeast 
gradient within Europe, 
with the highest 
prevalence in the world 
being in the United 
Kingdom, and some of 
the lowest prevalences 
in Albania and Greece; 
(iv) Africa and Asia 
generally showed 
relatively low asthma 
prevalence. These 
striking findings call into 
question many of the 
“established” theories of 
asthma causation, and 
have played a major role 
in the development of 
new theories of asthma 
causation in recent years 
(Douwes and Pearce, 
2003).
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Figure 3.1  

Twelve month period prevalence of asthma symptoms in 13-14 year old children in 
Phase I of the International Study of Asthma and Allergies in Childhood (ISAAC) 

Source: ISAAC Steering Committee (1998b) 
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Measures of Effect in Prevalence Studies 

Figure 3.2 shows the relationship 
between incidence and prevalence of 
disease in a “steady state” population. 
Assume that the population is in a 
“steady state” (stationary) over time (in 
that the numbers within each 
subpopulation defined by exposure, 
disease and covariates do not change 
with time) – this usually requires that 
incidence rates and exposure and 
disease status are unrelated to the 
immigration and emigration rates and 

population size - and that average 
disease duration (D) does not change 
over time. Then, if we denote the 
prevalence of disease in the study 
population by P, the prevalence odds is 
equal to the incidence rate (I) times the 
average disease duration (Alho, 1992): 

 P 
 ------ = ID 
 (1-P) 

Figure 3.2 
 
Relationship between prevalence and incidence in a “steady state” population 

Non-asthmatic
[N(1-P)]

Asthma
cases
[NP]

N(1-p) x I

NP/D

P/(1-P) = I x D

P=prevalence
I=incidence
D=duration
N=population

Now suppose that we compare two 
populations (indexed by 1=exposed and 
0=non-exposed) and that both satisfy 
the above conditions. Then, the 
prevalence odds is directly proportional 
to the disease incidence, and the 
prevalence odds ratio (POR) satisfies the 
equation: 

POR = [P1/(1-P1)]/[P0/(1-P0)] = I1D1/I0D0

An increased prevalence odds ratio may 
thus reflect the influence of factors that 
increase the duration of disease, as well 
as those that increase disease incidence. 
However, in the special case where the
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average duration of disease is the same 
in the exposed and non-exposed groups 
(i.e. D1 = D0), then the prevalence odds 
ratio satisfies the equation: 

POR = I1/I0 

i.e. under the above assumptions, the 
prevalence odds ratio directly estimates 
the incidence rate ratio (Pearce, 2004). 
However, it should be emphasised that 
prevalence depends on both incidence 
and average disease duration, and a 

difference in prevalence between two 
groups could entirely depend on 
differences in disease duration (e.g. 
because of factors which prolong or 
exacerbate symptoms) rather than 
differences in incidence. Changes in 
incidence rates, disease duration and 
population sizes over time can also bias 
the POR away from the rate ratio, as can 
migration into and out of the population 
at risk or the prevalence pool. 
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Table 3.1 

Findings from a hypothetical prevalence study of 20,000 persons 

 Exposed Non-exposed Ratio 
-------------------------------------------------------------------------------------- 
Cases 909 (a) 476 (b) 
Non-cases 9,091 (c) 9,524 (d) 
-------------------------------------------------------------------------------------- 
Total population 10,000 (N1) 10,000 (N0) 
-------------------------------------------------------------------------------------- 
Prevalence 0.0909 (P1) 0.0476 (P0) 1.91 
Prevalence odds 0.1000 (O1) 0.0500 (O0) 2.00 
able 3.1 shows data from a 
revalence study of 20,000 people. 
his is based on the incidence study 
presented in table 2.2 (chapter 2), 
ith the assumptions that, for both 
opulations, the incidence rate and 
opulation size is constant over time, 
at the average duration of disease is 

ve years, and that there is no 
igration of people with the disease 
to or out of the population (such 
sumptions may not be realistic, but 
e made here for purposes of 
ustration). In this situation, the 
umber of cases who "lose" the 
isease each year is balanced by the 

number of new cases generated from 
the source population. For example, in 
the non-exposed group, there are 476 
prevalent cases, and 95 (20%) of 
these "lose" their disease each year; 
this is balanced by the 95 people who 
develop the disease each year (0.0100 
of the susceptible population of 9524 
people). With the additional 
assumption that the average duration 
of disease is the same in the exposed 
and non-exposed groups, then the 
prevalence odds ratio (2.00) validly 
estimates the incidence rate ratio (see 
table 2.2). 
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3.2. Prevalence Case-Control Studies

Just as an incidence case-control study 
can be used to obtain the same findings 
as a full incidence study, a prevalence 
case-control study can be used to obtain 
the same findings as a full prevalence 
study in a more efficient manner.  

For example, in a prevalence study, 
obtaining exposure information may be 
difficult or costly, e.g. if it involves 
lengthy interviews, or expensive testing 
of biological samples. In this situation, a 
considerable gain in efficiency can be 
achieved by only obtaining exposure 
information on the prevalent cases and a 
sample of controls selected at random 
from the non-cases, rather than 
collecting exposure information for 
everyone in the prevalence study. 

 

Measures of Effect in Prevalence 
Case-Control Studies 

Suppose that a nested case-control 
study is conducted in the study 
population (table 3.1), involving all of 
the 1,385 prevalent cases and a group 
of 1,385 controls (table 3.2). The usual 
approach is to select controls from the 
non-cases. The ratio of exposed to non-
exposed controls will then estimate the 
exposure odds (b/d) of the non-cases, 
and the odds ratio obtained in the 
prevalence case-control study will 
therefore estimate the prevalence odds 
ratio in the source population (2.00), 
which in turn estimates the incidence 
rate ratio provided that the 
assumptions described above are 
satisfied in the exposed and non-
exposed populations.

Table 3.2 

Findings from a hypothetical prevalence case-control study based on the population 
represented in table 3.1 

 Exposed     Non-exposed   Ratio 
-------------------------------------------------------------------------------------- 
Cases 909 (a) 476 (b) 
Controls 676 (c)        709 (d) 
-------------------------------------------------------------------------------------- 
Prevalence odds 1.34 (O1)  0.67 (O0) 2.00 
--------------------------------------------------------------------------------- 
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Example 3.2 

Studies of congenital 
malformations usually 
involve estimating the 
prevalence of 
malformations at birth 
(i.e. this is a prevalence 
rather than an incidence 
measure). Garcia et al 
(1999) conducted a 
(prevalence) case-control 
study of occupational 

exposure to pesticides and 
congenital malformations 
in Comunidad Valenciana, 
Span. A total of 261 cases 
and 261 controls were 
selected from those 
infants born in eight 
public hospitals during 
1993-1994. For mothers 
who were involved in 
agricultural activities in 

the month before 
conception and the first 
trimester of pregnancy, 
the adjusted prevalence 
odds ratio for congenital 
malformations was 3.2 
(95% CI 1.1-9.0). There 
was no such association 
with paternal agricultural 
work.

Summary

When a dichotomous outcome is under 
study (e.g. being alive or dead, or 
having or not having a disease) four 
main types of studies can be identified: 
incidence studies, incidence case-control 
studies, prevalence studies, and 
prevalence case-control studies 
(Morgenstern and Thomas, 1993; 
Pearce, 1998). Prevalence studies 
involve measuring the prevalence of the 
disease in the source population at a 

particular time, rather than the incidence 
of the disease over time. Prevalence 
case-control studies involve sampling on 
the basis of outcome, i.e. they usually 
involve all prevalent cases in the source 
population and a control group (of non-
cases) sampled from the source 
population.
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CHAPTER 4.  More Complex Study Designs 
(In: Pearce N. A Short Introduction to Epidemiology. 2nd ed. Wellington, CPHR, 2005) 

In the previous two chapters I reviewed 
the possible study designs for the simple 
situation where individuals are exposed 
to a particular risk factor (e.g. a 
particular chemical) and when a 
dichotomous outcome is under study 
(e.g. being alive or dead, or having or 

not having a particular disease). I now 
consider studies involving other axes of 
classification, continuous measurements 
of health status (e.g. continuous lung 
function or blood pressure 
measurements) and more complex study 
designs (ecologic and multilevel studies).

4.1: Other Axes of Classification

The four basic study types discussed in 
chapters 2 and 3 are defined in terms of: 
(a) the type of outcome under study 
(incidence or prevalence); and (b) 
whether there is sampling on the basis of 
outcome. They do not involve any 
consideration of the nature of the 
exposure data. This provides additional 
axes of classification. 

Continuous Exposure Data 

Firstly, it should be noted that in 
discussing the above classification we 
have assumed that exposure is 
dichotomous (i.e. study participants 
are exposed or not exposed). In 
reality, there may be multiple 
exposure categories (e.g. high, 
medium and low exposure), or 
exposure may be measured as a 
continuous variable (see chapter 8). 
However, although this requires minor 
changes to the data analysis (see 
chapter 12), it does not alter the four-
fold categorisation of study design 
options presented above. 

The Timing of Collection Of Exposure 
Information 

Perhaps the feature that has received 
the most attention in various 
classification schemes is the timing of 
the collection of exposure information. 
This has dominated discussions of 
“directionality”, particularly with regard 
to case-control studies. In fact, for all of 
the four basic study types, exposure 
information can be collected 
prospectively or retrospectively. For 
example, an incidence study or incidence 
case-control study of occupational cancer 
may collect exposure information 
prospectively, or use historical 
information that was collected 
prospectively but abstracted 
retrospectively by the investigator (e.g. 
occupational hygiene monitoring 
records), or use exposure information 
that was collected retrospectively (e.g. 
recall of duration and intensity of 
pesticide use). An unfortunate aspect of 
some discussions of the merits of case-
control studies is that they have often
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been labelled as “retrospective” studies, 
when this is in fact not an inherent part 
of their design. The potential “problem” 
of bias due to exposure ascertainment 
errors (e.g. recall bias) arises from the 
retrospective collection of exposure 
information, irrespective of whether the 
study is an incidence, incidence case-
control, prevalence, or prevalence case-
control study. 

Sources of Exposure Information 

Another set of issues that occur in 
practice involve the sources of exposure 
information (e.g. routine records, job-
exposure-matrices, questionnaires, 
biological samples). However, as noted 
above, these issues are important in 
understanding sources of bias but are 

not fundamental to the classification of  
study types since, as with issues of 
directionality, they do not affect the 
parameterization of the exposure-
outcome association. 

The Level of Measurement of 
Exposure 

A third additional axis of classification 
involves the level of measurement of 
exposure. In particular, in ecologic 
studies exposure information may be 
collected on a group rather than on 
individuals (e.g. average level of meat 
consumption) although others may still 
be available for individuals (e.g. age, 
gender). This situation is discussed in 
section 4.3.

4.2: Continuous Outcome Measures

Cross-Sectional Studies 

In chapters 2 and 3, the health outcome 
under study was a state (e.g. having or 
not having hypertension). Studies could 
involve observing the incidence of the 
event of acquiring the disease state (e.g. 
the incidence of being diagnosed with 
hypertension), or the prevalence of the 
disease state (e.g. the prevalence of 
hypertension). More generally, the 
health state under study may have 
multiple categories (e.g. non-
hypertensive, mild hypertension, 
moderate hypertension, severe 
hypertension) or may be represented by 
a continuous measurement (e.g. blood 
pressure). Since these measurements 
are taken at a particular point in time, 
such studies are often referred to as 
cross-sectional studies. Prevalence 
studies (see chapter 3) are a subgroup 

of cross-sectional studies in which the 
disease outcome is dichotomous. 

Although cross-sectional studies are 
sometimes described as studies in which 
exposure and disease information is 
collected at the same point in time (e.g. 
Kramer and Boivin, 1988; Last 1988), 
this is not in fact an inherent feature of 
such studies. In most cross-sectional 
studies (including prevalence studies), 
information on exposure will be 
physically collected by the investigator at 
the same time that information on 
disease is collected. Nonetheless, 
exposure information may include 
factors that do not change over time 
(e.g. gender) or change in a predictable 
manner (e.g. age) as well as factors that 
do change over time. The latter may 
have been measured at the time of data 
collection (e.g. current levels of airborne 
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dust exposure), or at a previous time 
(e.g. from historical records on past 
exposure levels) or integrated over time.  
The key feature of cross-sectional 
studies is that they involve studying 
disease at a particular point in time. 
Exposure information can be collected 
for current and/or historical exposures, 
and a wide variety of exposure 
assessment methods can be used within 
this general category of study (these are 
discussed further in chapter 8). 

Just as a prevalence case-control study 
can be based on a prevalence survey, a 
cross-sectional study can also involve 
sampling on the basis of the disease 
outcome. For example, a cross-sectional 
study of bronchial hyperresponsiveness 
(BHR) could involve testing all study 
participants for BHR and then 
categorising the test results into severe 
BHR, mild BHR, and no BHR, and then 
obtaining exposure information on all 
severe BHR cases and from random 
samples of the other two groups. 

Measures of Effect in Cross-Sectional 
Studies 

In a simple cross-sectional study 
involving continuous outcome data, the 
basic methods of statistical analysis 
involve comparing the mean level of the 
outcome in “exposed” and “non-
exposed” groups, e.g. the mean levels of 
blood pressure in “exposed” and “non-
exposed” people. Standard statistical 
methods of analysis for comparing 
means (perhaps after a suitable 
transformation to normalise the data), 
and calculating confidence intervals (and 
associated p-values) for differences 
between means, can be used to analyse 
such studies (see chapter 12). More 
generally, regression methods can be 
used to model the relationship between 
the level of exposure (measured as a 
continuous variable) and the level of the 
outcome measure (also measured as a 
continuous variable) (e.g. Armitage et al, 
2002). 

Example 4.1 

Nersesyan et al (2001) 
studied chromosome 
aberrations in 
lymphocytes of persons 
exposed to an 
earthquake in Armenia. 
They collected blood 
samples from 41 victims 
of the 1988 earthquake 
and from 47 reference 
blood donors. Those 

“exposed” to the 
earthquake had a higher 
proportion of cells with 
chromosome aberrations 
(3.1% (SD 2.1)) than 
the referents (1.7% (SD 
1.3)). The differences 
persisted when the data 
were adjusted for age 
and gender. The authors 
suggested that the 

findings could be due 
either to environmental 
exposures related to the 
earthquake or to severe 
psychogenic stress. 
They noted that studies 
in wild rodents living in 
seismic regions have 
shown similar findings.
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Longitudinal Studies

Longitudinal studies (cohort studies) 
involve repeated observation of study 
participants over time (Pearce et al, 
1998). Incidence studies (chapter 2) are 
a subgroup of longitudinal study in which 
the outcome measure is dichotomous. 
More generally, longitudinal studies may 
involve repeated assessment of 
categorical or continuous outcome 
measures over time (e.g. a series of 
linked cross-sectional studies in the 
same population). They thus can involve 
incidence data, a series of prevalence 
surveys, or a series of cross-sectional 
continuous outcome measures. 

General longitudinal studies 

A simple longitudinal study may involve 
comparing the disease outcome 
measure, or more usually changes in the 
measure over time, between exposed 
and non-exposed groups. For example, 
rather than comparing the incidence of 
hypertension (as in an incidence study), 

or the prevalence at a particular time (as 
in a prevalence study), or the mean 
blood pressure at a particular point in 
time (as in a cross-sectional study), a 
longitudinal study might involve 
measuring baseline blood pressure in 
exposed and non-exposed persons and 
then comparing changes in mean blood 
pressure (i.e. the change from the 
baseline measure) over time in the two 
groups. Such a comparison of means can 
be made using standard statistical 
methods for comparing means and 
calculating confidence intervals and 
associated p-values for the difference 
between the means (Armitage et al, 
2002; Beaglehole et al, 1993). More 
generally, regression methods (Diggle et 
al, 1994) might be used to model the 
relationship between the level of 
exposure (measured as a continuous 
variable) and the level of the outcome 
measure (also measured as a continuous 
variable, in this instance the change in 
FEV1).

Example 4.2 

The Tokelau Island 
Migrant Study (Wessen 
et al, 1992) examined 
the effects of migration 
on development of 
‘Western diseases’ within 
a population which 
initially had a low 
incidence of these 
conditions. Round I 
surveys were conducted 
in the Tokelau Islands in 
1968/1971, and these 

were repeated (Round 
II) in both the Tokelau 
Islands (1976) and in 
New Zealand (1975-7). 
A regression analysis of 
changes in blood 
pressure between Round 
I and Round II (adjusted 
for age) found that the 
mean annual increase in 
blood pressure was 
greater in those who had 
migrated than in those 

who had not: the mean 
differences were 1.43 for 
systolic and 1.15 for 
diastolic in men, and 
0.66 and 0.46 
respectively in women. 
These differences in 
rates of annual increase 
in blood pressure were 
maintained in 
subsequent surveys in 
men, but not in women. 
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Time series 

One special type of longitudinal study is 
that of “time series” comparisons in 
which variations in exposure levels and 
symptom levels are assessed over time 
with each individual serving as their own 
control. Thus, the comparison of 
“exposed” and “non-exposed” involves 
the same persons evaluated at different 
times, rather than different groups of 
persons being compared (often at the 
same time) as in other longitudinal 
studies. The advantage of the time series 
approach is that it reduces or eliminates 
confounding (see chapter 6) by factors 
which vary among subjects but not over 
time (e.g. genetic factors), or whose day 
to day variation is unrelated to the main 
exposure (Pope and Schwartz, 1996). On 
the other hand, time series data often 
require special statistical techniques 
because any two factors that show a 
time trend will be correlated (Diggle et 
al, 1994). For example, even a three-
month study of lung function in children 
will generally show an upward trend due 
to growth, as well as learning effects 
(Pope and Schwartz, 1996). A further 
problem is that the change in a measure 
over time may depend on the baseline 
value, e.g. changes in lung function over 
time may depend on the baseline level 
(Schouten and Tager, 1996). 

Time series can involve dichotomous 
(binary) data, continuous data, or 
“counts” of events (e.g. hospital 
admissions) (Pope and Schwartz, 1996), 
and the changes in these values may be 

measured over minutes, hours, days, 
weeks, months or years (Dockery and 
Brunekreef, 1996). In many instances, 
such data can be analysed using the 
standard statistical techniques outlined 
above. For example, a study of daily 
levels of air pollution and asthma 
hospital admission rates can be 
conceptualised as a study of the 
incidence of hospital admission in a 
population exposed to air pollution 
compared with that in a population not 
exposed to air pollution. The key 
difference is that only a single population 
is involved, and it is regarded as 
exposed on high pollution days and as 
non-exposed on low pollution days. 
Provided that the person-time of 
exposure is appropriately defined and 
assessed, then the basic methods of 
analysis are not markedly different from 
other studies involving comparisons of 
exposed and non-exposed groups. 

However, the analysis of time series may 
be complicated because the data for an 
individual are not independent and serial 
data are often correlated (Sherrill and 
Viegi, 1996), i.e. the value of a 
continuous outcome measure on a 
particular day may be correlated with the 
value for the previous day.  
Furthermore, previous exposure may be 
as relevant as, or more relevant than, 
current exposure. For example, the 
effects of air pollution may depend on 
exposure on preceding days as well as 
on the current day (Pope and Schwartz, 
1996). 
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Example 4.3 

Hoek et al (2001) 
studied associations 
between daily variations 
in air pollution and 
mortality in The 
Netherlands during 
1986-1994. The authors 
found (table 4.1) that 
heart disease deaths 
were increased during 
periods with high levels 
of ozone, black smoke, 
particulate matter 10 
microns in diameter 
(PM10), carbon monoxide 
(CO), sulfur dioxide 

(SO2) and nitrogen 
dioxide (NO2). As with 
previously published 
studies, the effects 
depended on exposures 
on the previous few 
days, and were weaker 
when the analysis only 
considered exposures on 
a particular day without 
using any lag period 
(Schwartz, 2000). The 
authors reported that 
deaths due to heart 
failure, arrhythmia, 
cerebrovascular causes 

and thrombocytic causes 
were more strongly 
associated with air 
pollution than were 
cardiovascular deaths in 
general. In particular, 
heart failure deaths, 
which made up 10% of 
all cardiovascular 
deaths, were responsible 
for about 30% of the 
excess cardiovascular 
deaths related to air 
pollution from particular 
matter, SO2, CO, and 
NO2.  

Table 4.1 

Relative risks* (and 95% CIs) of cardiovascular disease mortality associated with air 
pollution concentrations in the Netherlands  

  
Pollutant Total CVD mortality Heart failure mortality 
------------------------------------------------------------------------------------------------ 

Ozone (1 day lag) 1.055 (1.032-1.079) 1.079 (1.009-1.154) 

Black smoke (7 day mean) 1.029 (1.013-1.046) 1.081 (1.031-1.134) 

PM10 (7 day mean) 1.012 (0.984-1.041) 1.036 (0.960-1.118) 

CO (7 day mean) 1.026 (0.993-1.060) 1.109 (1.012-1.216) 

SO2 (7 day mean) 1.029 (1.012-1.046) 1.098 (1.043-1.156) 

NO2(7 day mean) 1.023 (1.009-1.036) 1.064 (1.024-1.106) 

------------------------------------------------------------------------------------------------ 

*Relative risks per 1 to 99th percentile pollution difference 
Relative risks per 150 �g/m3 for ozone (8-hour maximum of the previous 
Day), per 120 �g/m3 for CO, per 80 �g/m3 for PM10, per 30 �g/m3

for NO2, and per 40 �g/m3 for black smoke and SO2, all as 7-day moving averages 
 
Source: Hoek et al (2001) 
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4.3 Ecologic and Multilevel Studies

The basic study designs described in 
chapters 2 and 3 involved the 
measurement of exposure and disease 
in individuals. In this section, I 
consider more complex study designs 
in which exposures are measured in 
populations instead of, or in addition 
to, individuals. 

Ecologic Studies 

In ecologic studies exposure 
information may be collected on a 
group rather than on individuals. In 
the past, ecologic studies have been 
regarded as an inexpensive but 
unreliable method for studying 
individual-level risk factors for disease. 
For example, rather than go to the 
time and expense to establish a cohort 
study or case-control study of fat 
intake and breast cancer, one could 
simply use national dietary and cancer 
incidence data and, with minimal time 
and expense, show a strong 
correlation internationally between fat 
intake and breast cancer. In this 
situation, an ecologic study does not 
represent a fundamentally different 
study design, but merely a particular 
variant of the four basic study designs 
described in chapter 2 in which 
information on average levels of 
exposure in populations is used as a 
surrogate measure of exposure in 
individuals. 

This approach has been quite rightly 
regarded as inadequate and unreliable 
because of the many additional forms 
of bias that can occur in such studies 
compared with studies of individuals 
within a population. In particular, not 
only will measures of exposure in 
populations often be poor surrogates 
for exposures in individuals, but the 

‘ecologic fallacy’ (see below) can occur 
in that factors that are associated with 
national disease rates may not be 
associated with disease in individuals 
(Greenland and Robins, 1994). Thus, 
ecologic studies have recently been 
regarded as a relic of the “pre-
modern” phase of epidemiology before 
it became firmly established with a 
methodologic paradigm based on the 
theory of randomized controlled trials 
of individuals.  

However, population-level studies are 
now experiencing a revival for two 
important reasons (Pearce, 2000). 

Firstly, it is increasingly recognised 
that, even when studying individual-
level risk factors, population-level 
studies play an essential role in 
defining the most important public 
health problems to be addressed, and 
in generating hypotheses as to their 
potential causes. Many important 
individual-level risk factors for disease 
simply do not vary enough within 
populations to enable their effects to 
be identified or studied (Rose, 1992). 
More importantly, such studies are a 
key component of the continual cycle 
of theory and hypothesis generation 
and testing (Pearce, 2000). 
Historically, the key area in which 
epidemiologists have been able to “add 
value” has been through this 
population focus (Pearce, 1996, 1999). 
For example, many of the recent 
discoveries on the causes of cancer 
(including dietary factors and colon 
cancer, hepatitis B and liver cancer, 
aflatoxins and liver cancer, human 
papilloma virus and cervical cancer) 
have their origins, directly or 
indirectly, in the systematic 
international comparisons of cancer 
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incidence conducted in the 1950s and 
1960s (Doll et al, 1966). These 
suggested hypotheses concerning the 
possible causes of the international 
patterns, which were investigated in 
more depth in further studies. In some 
instances these hypotheses were 

consistent with biological knowledge at 
the time, but in other instances they 
were new and striking, and might not 
have been proposed, or investigated 
further, if the population level analyses 
had not been done.

Example 4.4 

The International Study 
of Asthma and Allergies 
in Childhood (ISAAC) 
(Asher et al, 1995; 
Pearce et al, 1993) was 
described in example 
3.1. Figure 4.1 shows 
the findings for current 
wheeze (i.e. wheeze in 
the previous 12 months) 
and its association with 

tuberculosis notification 
rates (von Mutius et al, 
2000). It shows a 
negative association 
between tuberculosis 
rates and asthma 
prevalence. This is not 
compelling evidence in 
itself (because of the 
major shortcoming of 
ecologic analyses that 

are described below), 
but it is generally 
consistent with the 
“hygiene hypothesis” 
that suggests that 
asthma prevalence is 
increasing in Western 
countries because of the 
loss of a protective effect 
from infections such as 
tuberculosis in early life.

 
A second reason that ecologic studies 
are experiencing a revival is that it is 
increasingly being recognised that some 
risk factors for disease genuinely 
operate at the population level (Pearce, 
2000). In some instances they may 
directly cause disease, but perhaps 
more commonly they may cause disease 
as effect modifiers or determinants of 
exposure to individual-level risk factors. 
For example, being poor in a rich 
country or neighbourhood may be worse 
than having the same income level in a 
poor country or neighbourhood, because 
of problems of social exclusion and lack 
of access to services and resources (Yen 

et al, 1999). The failure to take account 
of the importance of population context, 
as an effect modifier and determinant of 
individual-level exposures could be 
termed the “individualistic fallacy” 
(Diez-Rouz, 1998) in which the major 
population determinants of health are 
ignored and undue attention is focussed 
on individual characteristics. In this 
situation, the associations between 
these individual characteristics and 
health can be validly estimated, but 
their importance relative to other 
potential interventions, and the 
importance of the context of such 
interventions, may be ignored.
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Figure 4.1

heeze last 12 months (written questionnaire) vs tuberculosis 
notification rate for the period 1980-1982 in countries with valid 
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valid tuberculosis notification data) and the prevalence of asthma symptoms in 13-14 
year old children in the International Study of Asthma and Allergies in Childhood (ISAAC) 

Source: von Mutius et al (2000) 

 
 

Example 4.5 

Wilkinson (1992) has 
analysed measures of 
income inequality and 
found them to be 
positively associated 
with national mortality 
rates in a number of 
Western countries. This 
is a true “ecologic 
exposure” since the level 
of income inequality is a 
characteristic of a 
country, and not of an 
individual. If this 
evidence is correct, this 

is clearly of crucial 
importance since it 
implies that 
‘development’ in itself 
may not automatically 
be good for health, and 
that the way in which 
the Gross National 
Product (GNP) is 'shared' 
may be as important as 
its absolute level. It 
should be noted, 
however, that this 
evidence has been 
disputed by other 

researchers (e.g. Lynch 
et al, 2000; Pearce and 
Davey Smith, 2003) who 
have argued that the 
level of income 
inequality in a country, 
or in a state, is a 
surrogate measure for 
other socioeconomic 
factors, including the 
provision of public 
education and health 
services, as well as 
social welfare services. 
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Ecologic Fallacies 

While stressing the potential value of 
ecologic analyses, it is also important to 
recognise their limitations. In particular, 
ecologic studies are a very poor means 
of assessing the effects of individual 
exposures (e.g. diet or tobacco 
smoking) since confounding (and effect 
modification) can occur at the individual 
level, the country (population) level, or 
both (Morgenstern, 1998). For example, 
almost any disease that is associated 
with affluence and westernisation has in 
the past been associated at the national 
level with sales of television sets, and 
nowadays is probably associated at the 
national level with rates of internet 

usage. This does not mean that 
watching television causes every type of 
disease, but rather than in many 
instances the association between sales 
of television sets and disease at the 
national level is confounded by other 
exposures (at both the national and 
individual level). A hypothetical example 
is given in example 4.6. Another 
problem is that individual level effects 
can confound ecologic estimates of 
population-level effects (Greenland, 
2001).These problems of cross-level 
inference are avoided (or reduced) in 
multilevel analyses (see below). 

 

Example 4.6 

Table 4.2 shows the data 
for a hypothetical 
ecological analysis. The 
numbers of cases and 
population numbers (and 
hence disease rates), as 
well as the percentage of 
the population exposed, 
are known for each 
country. Thus, the 
numbers of people 
exposed and non-
exposed within each 
country are known, but 
it is not known how 
many cases were 
exposed and how many 
were not; thus it is not 
possible to estimate the 
rates in the exposed and 
non-exposed groups 
within each country. The 
country-level data 
indicate a negative 
association between 
exposure and disease at 

the country level: if a 
regression is performed 
on the country-level data 
it indicates (comparing 
100% exposure with 0% 
exposure) a relative risk 
of 0.5. However, it is not 
known whether this 
association applies to 
individuals, since the 
data are not available. 

Tables 4.3-4.5 give three 
different scenarios, each 
of which could generate 
the data in table 4.2. In 
table 4.3, there is no 
confounding at the 
country level (because 
the rate in the non-
exposed is the same - 
200 per 1,000 - in each 
country), although there 
could of course still be 
uncontrolled confounding 
at the individual level. 

Thus, the ecologic 
analysis correctly 
estimates the individual-
level relative risk of 0.5. 
In table 4.4, there is 
confounding at the 
country level (because 
the rate in the non-
exposed differs by 
country) and there is in 
fact no association at the 
individual level. In table 
4.5, there is effect 
modification at the 
country level, and the 
relative risk is positive, 
but of differing 
magnitude, in all three 
countries. These three 
very different situations 
(a protective effect, no 
effect, a positive effect 
which is different in each 
country) all yield the 
same country-level data 
shown in table 4.2. 
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Table 4.2 

Hypothetical example of an ecologic analysis 
 
 Country 1  Country 2  Country 3 
 (35% exposed) (50% exposed) (65% exposed) 
 Cases Rate Cases Rate Cases Rate 

----------------------------------------------------------------------------------------- 

Exposed ?/ ? ?/ ? ?/ ? 

 7000  10000  13000 

Non-exposed ?/ ? ?/ ? ?/ ? 

 13000  10000  7000 

----------------------------------------------------------------------------------------------- 

Total 33/ 165 30/ 150 27/ 135 

 20000  20000  20000 

Source: Adapted from Morgenstern (1998) 
 

Table 4.3 

Hypothetical example of an ecologic analysis: 
No confounding by country 
 
 Country 1  Country 2  Country 3 
 (35% exposed) (50% exposed) (65% exposed) 
 Cases Rate Cases Rate Cases Rate 
---------------------------------------------------------------------------------------------- 

Exposed 7/ 100 10/ 100 13/ 100 

 7000  10000  13000 

Non-exposed 26/ 200 20/ 200 14/ 200 

 13000  10000  7000 

---------------------------------------------------------------------------------------------- 

Total 33/ 165 30/ 150 27/ 135 

 20000  20000  20000 

---------------------------------------------------------------------------------------------- 

Ratio 0.5 0.5 0.5 

Source: Adapted from Morgenstern (1998) 
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Table 4.4 

Hypothetical example of an ecologic analysis: 
Confounding by country 
 
 Country 1  Country 2  Country 3 
 (35% exposed) (50% exposed) (65% exposed) 
 Cases Rate Cases Rate Cases Rate 
---------------------------------------------------------------------------------------------- 
Exposed 12/ 171 15/ 150 18/ 139 

 7000  10000  13000 

Non-exposed 21/ 162 15/ 150 9/ 129 

 13000  10000  7000 

---------------------------------------------------------------------------------------------- 

Total 33/ 165 30/ 150 27/ 135 

 20000  20000  20000 

---------------------------------------------------------------------------------------------- 

Ratio 1.1 1.0 1.1 

Source: Adapted from Morgenstern (1998) 
 

Table 4.5 

Hypothetical example of an ecologic analysis: 
Effect modification by country 
 
 Country 1  Country 2  Country 3 
 (35% exposed) (50% exposed) (65% exposed) 
 Cases Rate Cases Rate Cases Rate 
---------------------------------------------------------------------------------------------- 
Exposed 20/ 286 20/ 200 20/ 154 

 7000  10000  13000 

Non-exposed 13/ 100 10/ 100 7/ 100 

 13000  10000  7000 

---------------------------------------------------------------------------------------------- 

Total 33/ 165 30/ 150 27/ 135 

 20000  20000  20000 

---------------------------------------------------------------------------------------------- 

Ratio 2.9 2.0 1.5 

Source: Adapted from Morgenstern (1998) 
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Multilevel Studies 

If individual as well as population-level 
data are available, then the problems 
of cross-level confounding and effect 
modification (illustrated in example 
4.6) are avoided by using multilevel 
modelling (Greenland, 2000, 2002). 
This enables the simultaneous 
consideration of individual level effects 
(e.g. individual income) and 
population-level effects (e.g. per capita 
national income, or income inequality). 
This approach therefore combines the 

best features of individual level 
analyses and population-level analyses. 
In particular, it enables us to take the 
population context of exposure into 
account (Pearce, 2000). However, it 
should be stressed that multilevel 
modelling is complex, and requires 
intensive consideration of possible 
biases at the population level, as well 
as at the individual level (Blakely and 
Woodward, 2000).

 

Example 4.7 

Yen and Kaplan (1999) 
conducted a multi-level 
analysis of 
neighbourhood social 
environment and risk of 
death in the Alameda 
County Study, 
comprising 6,928 non-
institutionalised adult 
residents of the County 

recruited in 1965. 
Mortality risks were 
significantly higher in 
neighbourhoods with a 
“low social 
environment”, even 
after account was 
taken of individual 
income level, 
education, ethnicity, 

perceived health 
status, smoking status, 
body mass index, and 
alcohol consumption. 
The authors concluded 
that the findings 
demonstrate the 
importance of area 
characteristics as a 
health risk factor.

 

Summary 

The basic study designs presented in 
chapters 2 and 3 can be extended in 
two ways: by the inclusion of continuous 
outcome measures; and by the use of 
exposure information on populations 
rather than individuals.  

Cross-sectional studies can include a 
variety of measurements of the health 
outcome under study (e.g. lung function 
or blood pressure measurements). 

Prevalence studies are a subgroup of 
cross-sectional studies in which the 
outcome measure is dichotomous. 
Similarly, longitudinal studies can 
involve incidence data, but may also 
involve a series of cross-sectional 
measurements. Incidence studies are a 
subgroup of longitudinal studies in 
which the outcome measure is 
dichotomous. Time series studies are a 
particular type of longitudinal study in 
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which each subject serves as his or her 
own control.  

Ecologic studies play an important role 
in the process of hypothesis generation 
and testing, but they pose additional 
problems of bias when attempting to 

estimate the effects of exposures in 
individuals. These problems are avoided 
(or reduced) in multilevel analyses, 
which permit us to take the population 
context of exposure into account. 
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CHAPTER 5: Precision 
(In: Pearce N. A Short Introduction to Epidemiology. 2nd ed. Wellington, CPHR, 2005)

Random error will occur in any 
epidemiologic study, just as it occurs in 
experimental studies. It is often referred 
to as chance, although it can perhaps 
more reasonably be regarded as 
"ignorance" (although it is not the only 
thing that we may be ignorant about as 
our study may be biased by unknown 
confounders, measurement error, etc). 
For example, if we toss a coin 50 times, 
then ideally we might be able to predict 
the outcome of each “toss” based on the 
speed, spin, and trajectory of the coin. 
In practice, we do not have all of the 
necessary information (because of 
“ignorance”), or the computing power to 
use it (because of chaotic behaviour), 
and we therefore regard the outcome of 
each “toss” as a “chance” phenomenon. 
However, we may note that, on the 
average, 50% of the “tosses” are heads 
and therefore we may say that a 
particular toss has a “50% chance” of 
producing a head. 

Similarly, suppose that 50 lung cancer 
deaths occurred among 10,000 people 
aged 35-39 exposed to a particular 
factor during one year.  Then, if each 
person had exactly the same cumulative 
exposure, we might expect two 
subgroups of 5,000 people each to 
experience 25 deaths during the one-
year period.  However, just as 50 tosses 
of a coin will not usually produce exactly 
25 heads and 25 tails, neither will there 
be exactly 25 deaths in each group.  This 
occurs because of differences in 
exposure to other risk factors for lung 
cancer, and differences in individual 
susceptibility between the two groups.  
Ideally, we should attempt to gather 
information on all known risk factors 
(potential confounders), and to adjust 
for these in the analysis (see chapter 

12).  However, there will always be other 
unknown or unmeasurable risk factors 
operating, and hence the disease rates in 
particular subgroups will fluctuate about 
the average. This will occur even if each 
subgroup has exactly the same exposure 
history. 

Even in an experimental study, in which 
participants are randomised into 
"exposed" and "non-exposed" groups, 
there will be "random" differences in 
background risk between the compared 
groups, but these will diminish in 
importance (i.e. the random differences 
will tend to “even out”) as the study size 
grows. In epidemiological studies, 
because of the lack of randomisation, 
there is no guarantee that differences in 
baseline (background) risk will "even 
out" between the exposure groups as the 
study size grows.  

The basic principles of analysis of 
epidemiologic data are discussed in 
chapter 12. However, at this stage it is 
important to discuss some basic 
statistical principles and methods since 
they are relevant to the calculation of 
the appropriate study size. 
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5.1: Basic Statistics

Basic Concepts 

Data can be summarized in various 
forms, including frequency tables, 
histograms, bar charts, cross-tabulations 
and pie charts. However, it is usually 
also useful to give a summary measure 
of central tendency. The mean (or 
average) is the most commonly used 
measure of central tendency, because of 
its convenient statistical properties. The 
next step is data smoothing which 
involves the combination of the data with 
a statistical model. In the simplest case, 
this involves assuming a particular 
statistical distribution in order to obtain a 
summary measure of variability of the 
data. The most common measure of 
variability is the standard deviation 
(Armitage et al, 2002). The standard 
deviation is especially useful when the 
underlying data distribution is 
approximately normal (i.e. symmetric 
with a special type of bell-shape). If data 
is not normally distributed, then it can 
often be made approximately normally 
distributed by an appropriate 
transformation (e.g. a log 
transformation), but these 
transformations may distort the scientific 
meaning of the findings, and make them 
difficult to interpret. 

Usually it is not possible to study the 
entire population in which one is 
interested (theoretically, this is almost 
always infinite since we usually wish to 
generalise our findings not only to the 
population we are studying, but also to 
other populations). It is therefore 
necessary to consider a random sample 
and to relate its characteristics to the 
total population. If repeated samples are 

taken from the same population, then 
the mean will vary between samples. 
Even if the underlying population is not 
normally distributed, the means of the 
samples will be approximately normally 
distributed provided that the samples are 
sufficiently large (how "large" depends 
on how non-normally distributed the 
population is). The standard deviation of 
the sample means is termed the 
standard error of the mean. Since the 
means are approximately normally 
distributed, about 95% of sample means 
will lie within 1.96 standard errors of the 
overall population mean. Usually, a 
study only involves one sample, but the 
standard error can be estimated by 
dividing the standard deviation of the 
sample by the square root of the number 
of people in the sample. 

Most epidemiological studies involve 
categorical rather than continuous 
outcome data. For example, in a 
particular area one might estimate the 
proportion of births involving congenital 
malformations over a particular time 
period (this is actually the prevalence at 
birth - it is very difficult to calculate the 
incidence of congenital malformations 
because this requires information on 
abortions and stillbirths as well as live 
births). This involves the calculation of a 
proportion (p). Under the binomial 
distribution, if the sample is sufficiently 
large, the sampling distribution will 
approximate to the normal distribution 
with mean (p) and standard deviation: 

 s =  (p(1-p)/n)0.5

where the “0.5” indicates the square root 
of the expression in parentheses. Thus, 
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one can calculate the proportion with 
malformations (i.e. the mean score for a 
population in which a malformation 
scores 1 and a completely healthy baby 
scores 0), and the standard deviation of 
this proportion (i.e. the standard error of 
the mean score), and if the sample is 
sufficiently large one can analyze these 
estimates based on the normal 
distribution. 

Testing and Estimation 

Usually, in epidemiologic studies, we 
wish to measure the difference in 
disease occurrence between groups 
exposed and not exposed to a particular 
factor. For example, if we have 
estimated the proportion of pregnancies 
involving congenital malformations in an 
area with high nitrate levels in drinking 
water, then we would wish to compare 
this to the corresponding proportion in 
an area with low nitrate levels (or with 

the proportion in all births nationally. In 
doing so, we not only wish to estimate 
the size of the observed association, but 
also whether an association as large as 
this is likely to have arisen by chance, if 
in fact there is no causal association 
between exposure and disease. The p-
value is the probability that differences 
as large or larger as those observed 
could have arisen by chance if the null 
hypothesis (of no association between 
exposure and disease) is correct. In the 
past, it is been common to “test” the 
statistical significance of the study 
findings by seeing whether the p-value is 
less than an arbitrary value (e.g. 
p<0.05). The limitations of statistical 
significance testing are discussed in 
chapter 12. However, even if we do not 
intend to use p-values when reporting 
the findings of a study, the statistical 
principles involved are nevertheless 
relevant to determining the appropriate 
study size.

5.2: Study Size and Power 

The most effective means of reducing 
random error is by increasing the study 
size, so that the precision of the 
measure of association (the effect 
estimate) will be increased, i.e. the 
confidence intervals will be narrower. 
Random error thus differs from 
systematic error (see chapter 6) which 
cannot be reduced simply by increasing 
the study size. 
A second factor that can affect 
precision, given a fixed total study size, 
is the relative size of the reference 
group (the unexposed group in a cohort 
study, or the controls in a case-control 
study). When exposure is not associated 
with disease (i.e. the true relative risk is 
1.0), and the costs (of recruitment, data 

collection, etc) of index and reference 
subjects are the same, then a 1:1 ratio 
is most efficient for a given total study 
size. When exposure increases the risk 
of the outcome, or referents are 
cheaper to include in the study than 
index subjects, then a larger ratio may 
be more efficient. The optimal 
reference: index ratio is rarely greater 
than 2:1 for a simple unstratified 
analysis (Walter, 1977) with equal index 
and referent costs, but a larger average 
ratio may be desirable in order to 
assure an adequate ratio in each 
stratum for stratified analyses. 

The ideal study would be infinitely large, 
but practical considerations set limits on 
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the number of participants that can be 
included. Given these limits, it is 
desirable to find out, before 

commencing the study, whether it is 
large enough to be informative. One  

method is to calculate the "power" of the  
study. This depends on five factors:

• the expected relative risk (i.e. the 
specified value of the relative risk 
under the alternative (non-null) 
hypothesis)); 

• the ratio of the sizes of the two 
groups being studied; 

• the total number of study participants. 

• the cutoff value (i.e. alpha level) 
below which the p-value from the 
study would be considered 
“statistically significant”. This value 
is usually set at 0.05 or 5%; 

• the disease rate in the non-exposed 
group in a cohort study or the 
exposure prevalence of the controls 
in a case-control study; 

Once these quantities have been 
determined, standard formulas are then 
available to calculate the statistical 
power of a proposed study (Walter, 

1977; Schlesselman, 1982). The 
standard normal deviate corresponding 
to the power of the study (derived from 
Rothman and Boice, 1982) is then: 

 
Zβ = N0

0.5|P1 – P0|B0.5 – ZαB 

 K0.5

where: 

Zβ  = standard normal deviate corresponding to a given statistical power 

Zα  = standard normal deviate corresponding to an alpha level (the largest 
  p-value that would be considered "statistically significant") 

N0 = number of persons in the reference group (i.e. the non-exposed  
  group in a cohort study, or the controls in a case-control study) 

P1 = outcome proportion in study group 

P0 = outcome proportion in the reference group 

A = allocation ratio of referent to study group (i.e., the relative size of the 
  two groups) 

B = (1-P0) (P1+ (A-1) P0) + P0 (1-P1) 

C = (1-P0) (AP1 - (A-1) P0) + AP0 (1-P1) 

K = BC - A (P1-P0)2

Standard calculator and 
microcomputer programmes 
incorporating procedures for power 
calculations are widely available. In 
particular, EPI-INFO (Dean et al, 1990) 
can be downloaded for free from 

http://www.cdc.gov/epiinfo/, and 
Rothman’s Episheet programme 
(Rothman, 2002) can be downloaded 
for free from  
http://www.oup-usa.org/epi/rothman/ 
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Example 5.1 

Consider a proposed study 
of 5,000 exposed persons 
and 5,000 non-exposed 
persons. Suppose that on 
the basis of mortality 
rates in a comparable 

group of workers, the 
expected number of cases 
of the disease of interest 
is 25 in the non-exposed 
group. However, we 
expect that exposure will 

double the risk of disease, 
so the number of cases 
observed will be 50 in the 
exposed group.

 

Then: 
Zα = 1.96 (if a two-tailed significance test, for an alpha-level of 0.05, is to 
 be used) 

N0 = 5,000 

P1 = 0.010 (= 50/5000) 

P0 = 0.005 (= 25/5000) 

A = 1

Using the equation above, the standard 
normal deviate corresponding to the 
power of the study to detect a 

statistically significant lung cancer 
excess in the exposed group is:

 

Zβ = 50000.5 (0.010-0.005) (0.0149)0.5 - 1.96 x 0.0149 = 0.994  

 0.0001970.5

From tables for the 
(one-sided) standard 
normal distribution, it 
can be seen that this 
corresponds to a power 
of 83%. This means that 
if 100 similar studies of 
this size were 
performed, then we 
would expect 83 of them 
to show a statistically 
significant (p<0.05) 
excess of cases in the 
exposed group. 

An alternative approach 
is to carry out a 
standard analysis of the 
hypothesized results. If 
we make the 
assumptions given 
above, then the relative 
risk would be 2.0, with a 
90% confidence interval 
of 1.4-3.0. This 
approach only has an 
indirect relationship to 
the power calculations. 
For example, if the 

lower 95% confidence 
limit is 1.0, then the 
power for a two-tailed 
test (of p<0.05) would 
be only 50%. This 
simulated confidence 
interval gives the 
additional information 
that the observed 
relative risk could be as 
large as 3.0 or as low as 
1.4 if the observed 
relative risk is 2.0. 
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Related approaches are to estimate 
the minimum sample sizes required to 
detect an association (e.g., relative 
risk) of specified magnitudes 
(Beaumont and Breslow, 1981), and to 
estimate the minimum detectable 
association for a given alpha level, 
power and study size (Armstrong, 
1987). 

Occasionally, the outcome is measured 
as a continuous rather than a 
dichotomous variable (e.g. blood 
pressure). In this situation the 
standard normal deviate corresponding 
to the study power is: 

Zβ = N0
0.5(µ1-µ0) – Zα

 s(A + 1)0.5 

where:  

µ1 = mean outcome measure in 
  exposed group 

µ0 = mean outcome measure in 
  reference group 

s = estimated standard 
  deviation of outcome measure 

The power is not the probability that 
the study will estimate the size of the 
association correctly. Rather, it is the 
probability that the study will yield a 
"statistically significant" finding when 
an association of the postulated size 
exists. The observed association could 
be greater or less than expected, but 
still be "statistically significant". The 
overemphasis on statistical 
significance is the source of many of 
the limitations of power calculations. 
Many features such as the significance 
level are completely arbitrary, issues 
of confounding, misclassification and 
effect modification are generally 
ignored (although appropriate methods 
are available - see Schlesselman, 

1982; Greenland, 1983), and the size 
of the expected association is often 
just a guess. Nevertheless, power 
calculations are an essential aspect of 
planning a study since, despite all their 
assumptions and uncertainties, they 
nevertheless provide a useful general 
indication as to whether a proposed 
study will be large enough to satisfy 
the objectives of the study. 

Estimating the expected precision can 
also be useful (Rothman and 
Greenland, 1998). This can be done by 
"inventing" the results, based on the 
same assumptions used in power 
calculations, and carrying out an 
analysis involving calculations of effect 
estimates and confidence limits. This 
approach has particular advantages 
when the exposure is expected to have 
no association with disease, since the 
concept of power is not applicable but 
precision is still of concern. However, 
this approach should be used with 
considerable caution, as the results 
may be misleading unless interpreted 
carefully. In particular, a study with an 
expected lower limit equal to a 
particular value (e.g. 1.0) will have 
only a 50% chance of yielding an 
observed lower confidence limit above 
that value. 

In practice, the study size depends on 
the number of available participants 
and the available resources. Within 
these limitations it is desirable to make 
the study as large as possible, taking 
into account the trade-off between 
including more participants and 
gathering more detailed information 
about a smaller number of participants 
(Greenland, 1988). Hence, power 
calculations can only serve as a rough 
guide as to whether a feasible study is 
large enough to be worthwhile. Even if 
such calculations suggest that a 
particular study would have very low 
power, the study may still be 
worthwhile if exposure information is 
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collected in a form which will permit 
the study to contribute to the broader 
pool of information concerning a 
particular issue. For example, the 
International Agency for Research on 
Cancer (IARC) has organised several 
international collaborative studies such 
as those of occupational exposure to 
man-made mineral fibers (Simonato et 
al, 1986) and phenoxy herbicides and 
contaminants (Saracci et al, 1991). 
The man-made mineral fiber study 
involved pooling the findings from 
individual cohort studies of 13 
European factories. Most of the 

individual cohorts were too small to be 
informative in themselves, but each 
contributed to the overall pool of data. 

Once a study has been completed, 
there is little value in retrospectively 
performing power calculations since 
the confidence limits of the observed 
measure of effect provide the best 
indication of the range of likely values 
for the true association (Smith and 
Bates, 1992; Goodman and Berlin, 
1994). In the next chapter, random 
error will be ignored, and the 
discussion will concentrate on issues of 
systematic error.

Summary

Random error will occur in any 
epidemiologic study, just as it occurs 
in experimental studies. The most 
effective means of reducing random 
error is by increasing the study size, 
so that the precision of the effect 
estimate will be increased. Random 
error thus differs from systematic error 
which cannot be reduced simply by 
increasing the study size. The ideal 
study would be infinitely large, but 
practical considerations set limits on 
the number of participants that can be 
included. Given these limits, it is 
desirable to find out, before 
commencing the study, whether it is 

large enough to be informative. One 
method is to calculate the "power" of 
the study. In practice, the study size 
depends on the number of available 
participants and the available 
resources. Within these limitations it is 
desirable to make the study as large 
as possible, taking into account the 
trade-off between including more 
participants and gathering more 
detailed information about a smaller 
number of participants. Hence, power 
calculations can only serve as a rough 
guide as to whether a feasible study is 
large enough to be worthwhile. 
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CHAPTER 6: Validity 
(In: Pearce N. A Short Introduction to Epidemiology. 2nd ed. Wellington, CPHR, 2005)

Systematic error (lack of validity) is 
distinguished from random error (lack 
of precision) in that it would be 
present even with an infinitely large 
study, whereas random error can be 
reduced by increasing the study size. 
Thus, systematic error, or bias, occurs 
if there is a systematic difference 
between what the study is actually 
estimating and what it is intended to 
estimate. 

There are many different types of bias, 
but in studies of cause and effect most 
biases fall into one of three major 

categories (Rothman and Greenland, 
1998): confounding; selection bias; 
and information bias. In general 
terms, these refer to biases arising 
from differences in baseline disease 
risk between the exposed and non-
exposed subpopulations of the source 
population (confounding), biases 
resulting from the manner in which 
study participants are selected from 
the source population (selection bias), 
and biases resulting from the 
misclassification of these study 
participants with respect to exposure 
or disease (information bias).

6.1: Confounding 

Confounding occurs when the exposed 
and non-exposed groups (in the source 
population) are not comparable due to 
inherent differences in background 
disease risk (Greenland and Robins, 
1986) because of differences in the 
distribution of other risk factors between 
the exposed and non-exposed groups. 
For example, this could occur if we were 
studying the risk of heart disease in 
people who exercise frequently and 
those who do not, and if the people who 
exercised frequently smoked less than 
those who did not exercise; thus they 
might have a lower risk of heart disease 
because they smoked less, and not 
because they exercised more. Similar 
problems can occur in randomised trials 
because randomisation may fail, leaving 
the treatment groups with different 

characteristics (and different baseline 
disease risk) at the time that they enter 
the study, and because of differential 
loss and non-compliance across 
treatment groups. However, there is 
more concern about non-comparability 
in epidemiological studies because of 
the absence of randomisation. The 
concept of confounding thus generally 
refers to the source population, 
although confounding can also be 
introduced (or removed) by the manner 
in which study participants are selected 
from the source population (Pearce and 
Greenland, 2004). 

If no other biases are present, three 
conditions are necessary for a factor to 
be a confounder (Rothman and 
Greenland, 1998). 
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First, a confounder is a factor which is 
predictive of disease in the absence of 
the exposure under study. Note that a 
confounder need not be a genuine 
cause of disease, but merely 
"predictive". Hence, surrogates for 
causal factors (e.g. age) may be 
regarded as potential confounders, 
even though they are rarely directly 
causal factors. 

Second, a confounder is associated 
with exposure in the source population 
at the start of follow-up (i.e. at 
baseline). In case-control studies this 
implies that a confounder will tend to 
be associated with exposure among 
the controls. An association can occur 
among the cases simply because the 
study factor and a potential 
confounder are both risk factors for 
the disease, but this does not cause 
confounding in itself unless the 
association also exists in the source 
population. 

Thirdly, a variable which is affected by 
the exposure or the disease (e.g. an 
intermediate in the causal pathway 

between exposure and disease, or a 
symptom of disease) should not be 
treated as a confounder because to do 
so could introduce serious bias into the 
results (Greenland and Neutra, 1981; 
Robins, 1987; Weinberg, 1993). For 
example, in a study of high fat diet 
and colon cancer, it would be 
inappropriate to control for serum 
cholesterol levels if it was considered 
that high serum cholesterol levels were 
a consequence of a high fat diet, and 
hence a part of the causal chain 
leading from diet to colon cancer. On 
the other hand, if serum cholesterol 
itself was of primary interest, then this 
should be studied directly, and high fat 
diet would be regarded as a potential 
confounder if it also involved exposure 
to other risk factors for colon cancer. 
Evaluating this type of possibility 
requires information external to the 
study to determine whether a factor is 
likely to be a part of the causal chain. 
Intermediate variables can sometimes 
be used in the analysis, but special 
techniques are then required to avoid 
adding bias (Robins, 1989; Robins et 
al, 1992; Robins et al, 2000).

Example 6.1

Table 6.1 presents a 
hypothetical example of 
confounding by tobacco 
smoking in a prevalence 
case-control study. One-
half of the study 
participants are 
"exposed” to the risk 
factor of interest and 
one-half are not. 
However, two-thirds of 
the exposed people are 
smokers compared with 
one-third of the non-

exposed people. Thus, 
although “exposure” is 
not associated with 
disease either within the 
subgroup of smokers 
(POR=1.0) or within the 
subgroup of non-
smokers (POR=1.0), it is 
associated with disease 
overall (POR=1.38) 
when the two subgroups 
are combined. This 
occurs because smoking 
is associated with the 

exposure (as noted 
above) and is an 
independent risk factor 
for the disease (40% of 
non-exposed smokers 
have the disease 
compared with 20% of 
non-exposed non-
smokers). Thus, smoking 
is a confounder and the 
“crude” prevalence odds 
ratio of 1.38 is invalid 
because it is not 
adjusted for smoking. 
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Table 6.1  

Hypothetical example of confounding by tobacco smoking in a prevalence 
case-control study 

 Smokers  Non-smokers Total 
 Exposed Non- Exposed Non-  Exposed Non- 
  exposed  exposed  exposed 
Cases 800 400 200 400 1,000 8,00 
Non-cases 1,200 600 800 1,600 2,000 2,200 

Total 2,000 1,000 1,000 2,000 3,000 3,000 
Prevalence (%) 40 40  20 20 33.3 26.7 
Prevalence odds ratio 1.0 1.0 1.38 

Control of Confounding 

Misclassification of a confounder leads to 
a loss of ability to control confounding, 
although control may still be useful 
provided that misclassification of the 
confounder is non-differential 
(Greenland, 1980). Misclassification of 
exposure poses a greater problem 
because factors which influence 
misclassification may appear to be 
confounders, but control of these factors 
may increase the net bias (Greenland 
and Robins, 1985). In general, control of 
confounding requires careful use of a 
priori knowledge, as well as inference 
from the observed data. 

Control in the study design 

Confounding can be controlled in the 
study design, or in the analysis, or both. 
Control at the design stage involves 
three main methods (Rothman and 
Greenland, 1998).  

The first method is randomization, i.e., 
random allocation to exposure 
categories, but this is rarely an option in 
epidemiology which generally involves 
observational studies (it is debatable 

whether randomised studies are part of 
epidemiology or whether they constitute 
a separate methodology). 

A second method of control at the design 
stage is to restrict the study to narrow 
ranges of values of the potential 
confounders, e.g., by restricting the 
study to white males aged 35-54. This 
approach has a number of conceptual 
and computational advantages, but may 
severely restrict the number of potential 
study subjects and the generalizability of 
the study, as effects in younger or older 
people will not be observable. 

A third method of control involves 
matching study subjects on potential 
confounders. For example, in a cohort 
study one would match a white male 
non-exposed subject aged 35-39 with 
an exposed white male aged 35-39. This 
will prevent age-sex-race  confounding 
in a cohort study, but is seldom done 
because it may be very expensive. 
Matching can also be expensive in case-
control studies, and does not prevent 
confounding in such studies, but does 
facilitate its control in the analysis. 
Matching may actually reduce precision 
in a case-control study if it is done on a 
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factor which is associated with 
exposure, but is not a risk factor for the 
disease of interest. However, matching 
on a strong risk factor will usually 
increase the precision of effect 
estimates. 

Control in the Analysis 

Confounding can also be controlled in 
the analysis, although it may be 
desirable to match on potential 
confounders in the design to optimize 
the efficiency of the analysis. The 
analysis ideally should control 
simultaneously for all confounding 
factors. Control of confounding in the 
analysis involves stratifying the data 

according to the levels of the 
confounder(s) and calculating an effect 
estimate which summarizes the 
association across strata of the 
confounders. It is usually not possible to 
control simultaneously for more than 2 
or 3 confounders in a stratified analysis. 
For example, in a cohort study, finer 
stratification will often lead to many 
strata containing no exposed or no non-
exposed persons. Such strata are 
uninformative, thus fine stratification is 
wasteful of information. This problem 
can be mitigated to some extent, by the 
use of multiple regression which allows 
for simultaneous control of more 
confounders by "smoothing" the data 
across confounder strata.

Example 6.2

If the data presented in 
example 6.1 (table 6.1) 
is analysed separately in 
smokers and non-
smokers, then the 
prevalence odds ratio is 

1.0 in each of the two 
subgroups (i.e. 1.0 in 
smokers and 1.0 in non-
smokers). Taking a 
weighted average of 
these two stratum-

specific estimates (see 
chapter 12) then yields 
an overall smoking-
adjusted prevalence 
odds ratio of 1.0.

In general, control of confounding 
requires careful use of a priori 
knowledge, together with assessment 
of the extent to which the effect 
estimate changes when the factor is 
controlled in the analysis. Most 
epidemiologists prefer to make a 
decision based on the latter criterion, 
although it can be misleading, 
particularly if misclassification is 
present (Greenland and Robins, 1985). 
The decision to control for a presumed 
confounder can certainly be made with 
more confidence if there is supporting 

prior knowledge that the factor is 
predictive of disease.  

Misclassification of a confounder leads 
to a loss of ability to control 
confounding, although control may still 
be useful provided that 
misclassification of the confounder was 
nondifferential (unbiased) (Greenland, 
1980). Misclassification of exposure is 
more problematic, since factors which 
influence misclassification may appear 
to be confounders, but control of these 
factors may increase the net bias 
(Greenland and Robins, 1985). 
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Example 6.3

Suppose that a cohort 
study of lung cancer 
involves a comparison 
with national mortality 
rates in a country where 
50% of the population 
are non-smokers, 40% 
are moderate smokers 
with a 10-fold risk of 
lung cancer (compared 
to non-smokers), and 
10% are heavy smokers 
with a 20-fold risk of 
lung cancer.  Then, it 
can be calculated that 
the national lung cancer 

incidence rate will be 6.5 
(= 0.50 x 1.0 + 0.40 x 
10 + 0.10 x 20) times 
the rate in non-smokers.  
Suppose that it was 
considered most unlikely 
that the cohort under 
study contained more 
than 50% moderate 
smokers and 20% heavy 
smokers. Then, the 
incidence rate in the 
study cohort would be 
9.4 times the rate in 
non-smokers. Hence, the 
observed incidence rate 

would be biased upwards 
by a factor of 9.4/6.5 = 
1.4, i.e. it would be 1.4 
times higher than the 
national rate due to 
confounding by smoking. 
Table 7.2 gives a range 
of such calculations 
presented by Axelson 
(1978) using data from 
Sweden. The last column 
indicates the likely bias 
in the observed rate 
ratio due to confounding 
by smoking (a value of 
1.00 indicates no bias).

Table 6.2  

Estimated crude rate ratios in relation to fraction of smokers in various hypothetical 
populations 
 

Population fraction (%) 

Nonsmokers Moderate Smokersa Heavy Smokersa 
Bias in 

relative risk 
100 -- -- 0.15 
80 20 - 0.43 
70 30 -- 0.57 
60 35 5 0.78 
50 40 10 1.00b 
40 45 15 1.22 
30 50 20 1.43 
20 55 25 1.65 
10 60 30 1.86 
-- 65 35 2.08 
-- 25 75 2.69 
-- -- 100 3.08 

Source: Axelson (1978) 
aTwo different risk levels are assumed for smokers: 10 times for moderate smokers; and 20 times for heavy 
smokers. 
bReference population with rates similar to those in general population in countries such as Sweden. 
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Assessment of Confounding 

When one lacks data on a suspected 
confounder (and thus cannot control 
confounding directly) it is still desirable 
to assess the likely direction and 
magnitude of the confounding it 
produces. It may be possible to obtain 
information on a surrogate for the 
confounder of interest (for example, 
social class is associated with many 
lifestyle factors such as smoking, and 
may therefore be a useful surrogate 
for some lifestyle-related 
confounders). Even though confounder 
control will be imperfect in this 
situation, it is still possible to examine 
whether the exposure effect estimate 
changes when the surrogate is 
controlled in the analysis, and to 
assess the strength and direction of 
the change. For example, if the 
relative risk actually increases (e.g. 
from 2.0 to 2.5), or remains stable 
(e.g. at 2.0) when social class is 
controlled for, then this is evidence 
that the observed excess risk is not 
due to confounding by smoking, since 
social class is correlated with smoking 
(Kogevinas et al, 1997), and control 
for social class involves partial control 
for smoking. 

Alternatively, it may be possible to 
obtain accurate confounder 
information for a subgroup of 
participants in the study, and to assess 
the effects of confounder control in this 
subgroup. A related approach, known 
as two-stage sampling, involves 
obtaining confounder information for a 
sample of the source population (or a 
sample of the controls in a case-
control study). For example, in a study 
of asthma in children, it may not be 
possible to obtain information on 
humidity levels in the home in all 
children. However, it may still be 
possible to obtain humidity 
measurements for a sample of the 

exposed and non-exposed groups in 
order to check that the average level 
of humidity in the home is similar in 
the two groups. Such limited 
information, if taken in all exposure-
disease subgroups, can also be used to 
directly control confounding (White, 
1982; Walker, 1982; Rothman and 
Greenland, 1998). 

Finally, even if it is not possible to 
obtain confounder information for any 
study participants, it may still be 
possible to estimate how strong the 
confounding is likely to be from 
particular risk factors. For example, 
this is often done in occupational 
studies, where tobacco smoking is a 
potential confounder, but smoking 
information is rarely available; in fact, 
although smoking is one of the 
strongest risk factors for lung cancer, 
with relative risks of 10 or 20, it 
appears that smoking rarely exerts a 
confounding effect of greater than 1.5 
times in studies of occupational 
disease (Axelson, 1978; Siemiatycki, 
1988), because few occupations are 
strongly associated with smoking, 
although this degree of confounding 
may still be important in some 
contexts. 
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6.2: Selection Bias

Whereas confounding generally 
involves biases that are inherent in the 
source population, and therefore would 
occur even if everyone in the source 
population took part in the study, 
selection bias involves biases arising 
from the procedures by which the 
study participants are selected from 
the source population. Thus, selection 
bias is not an issue in a cohort study 
involving complete follow-up, since in 
this case the study cohort composes 
the entire source population. However, 
selection bias can occur if participation 

in the study or follow-up is incomplete. 
For example, in a cohort mortality 
study, if a national population registry 
(or some surrogate for this such as the 
United States Social Security system) 
were not available, then it might be 
necessary to attempt to contact each 
worker or his next-of-kin to verify vital 
status (i.e. whether the worker was 
still alive). Bias could occur if the 
response rate was higher in the most 
heavily exposed persons who had been 
diagnosed with disease than in other 
persons.

Example 6.4

Wrensch et al (2000) 
conducted a case-control 
study of 476 adults 
newly diagnosed with 
glioma in the San 
Francisco Bay Area 
between August 1991 
and April 1994, and 462 
age- gender- and 
ethnicity-matched 
controls. In addition, 
limited information was 

obtained during a brief 
telephone interview with 
101 controls who 
declined participation in 
the lengthy in-person 
interview. Controls who 
participated in the full 
interview were more 
likely than controls who 
only completed the 
telephone interview to 
report head injury. Thus 

there was evidence of a 
selection bias in the 
recruitment of controls. 
The odds ratio for cases 
versus controls who 
completed the full 
interview was 0.9, 
whereas when both 
control groups were 
combined the odds ratio 
was 1.3.

Although we should recognize the 
possible biases arising from subject 
selection, it is important to note that 
epidemiologic studies need not be based 
on representative samples to avoid bias. 
For example, in a cohort study persons 
who develop disease might be more 
likely to be lost to follow-up than 
persons who did not develop disease; 
however, this would not affect the 

relative risk estimate provided that loss 
to follow-up applied equally to the 
exposed and non-exposed populations 
(Criqui, 1979). Analogously, case-
control studies have differing selection 
probabilities as an integral part of their 
design, in that the selection probability 
of diseased persons is usually close to 
1.0 provided that most persons with 
disease are identified, whereas that for 
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non-diseased persons is substantially 
less; however, this does not affect the 
relative risk estimate provided that 
these selection probabilities apply 
equally within each exposure group. 

Additional forms of selection bias can 
occur in case-control studies because 
these involve sampling from the source 
population. In particular, selection bias 
can occur in a case-control study 
(involving either incident or prevalent 
cases) if controls are chosen in a non-
representative manner, e.g. if exposed 
people were more likely to be selected 
as controls than non-exposed people. 

Minimizing Selection Bias 

If selection bias has occurred in the 
enumeration of the exposed group, it 
may still be possible to avoid bias by 
choosing an appropriate non-exposed 
comparison group. For example, if the 
exposed group does not include all 
workers in a particular industry, but is 

restricted to union members (because 
the records are available), then the non-
exposed comparison group could be 
other workers in the same geographical 
area who are members of the same 
union, and/or a similar union. 

Control of Selection Bias 

Selection bias can sometimes be 
controlled in the analysis by identifying 
factors which are related to subject 
selection and controlling for them as 
confounders (provided that these 
factors are not affected by the study 
exposure or disease). For example, if 
white-collar workers are more likely to 
be selected for (or participate in) a 
study than manual workers (and white 
collar work is negatively or positively 
related to the exposure of interest), 
then this bias can be partially controlled 
by collecting information on social class 
and controlling for social class in the 
analysis as a confounder.

6.3: Information Bias

Information bias involves 
misclassification of the study 
participants with respect to disease or 
exposure status. Thus, the concept of 
information bias refers to those people 
actually included in the study, whereas 
selection bias refers to the selection of 
the study participants from the source 
population, and confounding generally 
refers to non comparability of 
subgroups within the source 
population. Information bias involves 
misclassification of the study subjects 
with respect to exposure, confounders, 
or disease.  

It is customary to consider two types 
of misclassification: non-differential 
and differential misclassification. 

Non-Differential Misclassification 

Non-differential misclassification 
occurs when the probability of 
misclassification of exposure is the 
same for cases and non-cases (or 
when the probability of 
misclassification of disease is the 
same for exposed and non-exposed 
persons). This can occur if exposed 
and non-exposed persons are equally
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likely to be misclassified according to 
disease outcome, or if diseased and 
non-diseased persons are equally 
likely to be misclassified according to 
exposure.  Non-differential 
misclassification of exposure usually 
(but not always) biases the relative 

risk estimate towards the null value 
of 1.0 (Copeland et al, 1977; 
Dosemeci et al, 1990). Hence, non-
differential misclassification tends to 
produce "false negative" findings and 
is of particular concern in studies 
which find a negligible association 

Example 6.5

In many cohort studies 
some exposed persons 
will be classified as non-
exposed, and vice versa. 
Table 6.3 illustrates this 
situation with 
hypothetical data from a 
study of lung cancer 
incidence in asbestos 
workers. Suppose the 
true incidence rates are 
100 per 100,000 person-
years in the high 
exposure group, and 10 
per 100,000 person-
years in the low exposure 
group, and the relative 

risk is thus 10. If 15% of 
high exposed persons are 
incorrectly classified, 
then 15 of every 100 
deaths and 15,000 of 
every 100,000 person-
years will be incorrectly 
allocated to the low 
exposure group. Similarly 
if 10% of high exposed 
persons are incorrectly 
classified, then 1 of every 
10 deaths and 10,000 of 
every 100,000 person-
years will be incorrectly 
allocated to the low 
exposure group. As a 

result, the observed 
incidence rates per 
100,000 person-years 
will be 91 and 23 
respectively, and the 
observed relative risk will 
be 4.0 instead of 10.0. 
Due to non-differential 
misclassification, 
incidence rates in the 
high exposed group have 
been biased downwards, 
and incidence rates in 
the low exposure group 
have been biased 
upwards.

Table 6.3 

Hypothetical data from a cohort study in which 15% of highly exposed persons and 
10% of low exposed persons are incorrectly classified. 

 Actual Observed 
 -------------------------------     ----------------------------------------------------------- 
 High Low High Exposure Low Exposure  
 Exposure Exposure   
----------------------------------------------------------------------------------------------------------------- 
Deaths 100 10 85 + 1 = 86 9 + 15 = 24 

Person-years 100,000 100,000 85,000 + 10,000 = 95,000 90,000 +15,000 = 105,000  
----------------------------------------------------------------------------------------------------------------- 
Incidence rate 100 10    91    23  
per 100,000 
person years   
---------------------------------------------------------------------------------------------------------------- 
Rate ratio 10.0 4.0
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between exposure and disease. One 
important condition is needed to ensure 
that exposure misclassification produces 
bias towards the null however: the 
exposure classification errors must be 
independent of other errors. Without 
this condition, non-differential exposure 
misclassification can produce bias in any 
direction (Chavance et al, 1992; 
Kristensen, 1992). 

Furthermore, there are several other 
situations in which non-differential 
misclassification will not produce a bias 
towards the null. 

Firstly, when the specificity of the 
method of identifying the disease under 
study is 100%, but the sensitivity is less 
than 100%, then the risk difference will 
be biased towards the null, but the risk 
ratio (or rate ratio) will be not be biased 

by the misclassification. For example if 
only 80% of the deaths are identified in 
a study, but this under-ascertainment 
applies equally to the exposed and non-
exposed groups, then this will not affect 
the relative risk estimate. 

Secondly, the effect estimate may be 
biased away from the null for some 
exposure categories when there are 
multiple exposure categories (see 
example 6.6). 

Finally, when there is positive 
confounding, and there is non-
differential misclassification of the 
confounder, then confounding control 
will be incomplete and the adjusted 
effect estimate will consequently be 
biased away from the null. 

 

Example 6.6

Table 6.4 gives 
hypothetical data from a 
cohort study in which the 
findings for the high and 
low exposure groups are 
the same as in example 
6.5, but there is also a 

non-exposed group for 
which there is no 
misclassification. In this 
instance, the non-
differential 
misclassification between 
the high and low exposure 

groups produces a bias 
away from the null when 
the low exposure group is 
compared to the non-
exposed group: the 
relative risk is 4.6 instead 
of 2.0.

Table 6.4  

Hypothetical data from a cohort study in which 15% of highly exposed persons and 10% of 
low exposed persons are incorrectly classified, but the non-exposed are correctly classified 

 Actual     Observed 
 --------------------------------------- --------------------------------------- 
 High Low Non-Exposed High Low Non-Exposed 
------------------------------------------------------------------------------------------------------------ 
Deaths 100 10 5 86 24 5 
Person-years 100,000 100,000 100,000 95,000 105,000 100,000 
------------------------------------------------------------------------------------------------------------ 
Rate 100 10 5 91 23 5 
------------------------------------------------------------------------------------------------------------ 
Rate ratio 20.0 2.0 1.0 18.1 4.6 1.0 

 76



One special type of non-differential 
misclassification occurs when the study 
outcome is not well-defined and 
includes a wide range of etiologically 
unrelated outcomes (e.g., all deaths). 
This may obscure the effect of exposure 
on one specific disease since a large 
increase in risk for this disease may 
only produce a small increase in risk for 
the overall group of diseases under 
study. A similar bias can occur when the 
exposure measure is not well defined 
and includes a wide range of 
etiologically unrelated exposures, 
possibly due to a non-specific exposure 
definition or due to the inclusion of 
exposures which could not have caused 
the disease of interest because they 
occurred after, or shortly before, 
diagnosis. It could be argued that these 

phenomena do not represent 
misclassification because these are not 
errors in measurement. However, they 
do involve misclassification in the sense 
that the etiologically relevant exposure 
(or disease) has not been measured 
appropriately. 

Differential Misclassification 

Differential misclassification occurs when 
the probability of misclassification of 
exposure is different in diseased and non-
diseased persons, or the probability of 
misclassification of disease is different in 
exposed and non-exposed persons. This 
can bias the observed effect estimate 
either toward or away from the null 
value. For example, in a nested case-
control study of lung cancer, with a 

Example 6.7 

Table 6.5 shows data from 
a hypothetical case-
control study in which 70 
of the 100 cases and 50 of 
the 100 controls have 
actually been exposed to 

some chemical. The true 
odds ratio is thus (70/30) 
(50/50) = 2.3. If 90% 
(63) of the 70 exposed 
cases, but only 60% (30) 
of the 50 exposed controls 

are classified correctly, 
then the observed odds 
ratio would be (63/37) / 
(30/70) = 4.0. 

 

Table 6.5  
 
Hypothetical data from a case-control study in which 90% of exposed cases and 60% of 
exposed controls are correctly classified 
 

     Actual  Observed 

 Exposed   Non-exposed  Exposed  Non-exposed 

Cases 70   30  63  37 

Controls 50   50  30  70 

Odds ratio  2.3     4.0  
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control group selected from among non-
diseased members of the cohort, the 
recall of occupational exposures in 
controls might be different from that of 
the cases. In this situation, differential 
misclassification would occur, and it 
could bias the odds ratio towards or 
away from the null, depending on 
whether members of the cohort who did 
not develop lung cancer were more or 
less likely to recall such exposure than 
the cases. 

As can be noted from example 6.7, 
misclassification can drastically affect 

the validity of a study. Given limited 
resources, it will often be more 
desirable to reduce information bias by 
obtaining more detailed information on 
a limited number of subjects than to 
reduce random error by including more 
subjects. However, a certain amount of 
misclassification is unavoidable, and it is 
usually desirable to ensure that it is 
towards the null value (as usually 
occurs with nondifferential exposure 
misclassification) to minimize the 
chance of false positive results.

Example 6.8

In the case-control 
study of lung cancer in 
Example 6.7, the 
misclassification could 
be made non-differential 
by selecting controls 
from cohort members 
with other types of 
cancer, or other 
diseases, in order that 
their recall of exposure 
would be more similar to 
that of the cases. As 
before, 63 (90%) of the 

exposed cases would 
recall exposure, but now 
45 (90%) of the 50 
exposed controls would 
recall their exposure. 
The observed odds ratio 
would be  
(63/37)/(45/55) = 2.1 
This estimate is still 
biased in comparison 
with the correct value of 
2.3. However, the bias is 
non-differential, is much 
smaller than before, and 

is in a predictable 
direction, towards the 
null. However, it should 
be noted that making a 
bias non-differential will 
not always make it 
smaller, and that the 
direction of bias from 
non-differential 
misclassification is 
sometimes predictable 
in advance.

Minimizing Information Bias

Misclassification can drastically affect 
the validity of a study. It is often helpful 
to ensure that the misclassification is 
non-differential, by ensuring that 
exposure information is collected in an 
identical manner in cases and non-cases 
(or that disease information is collected 
in an identical manner in the exposed 
and non-exposed groups). In this 
situation, if it is independent of other 
errors, exposure misclassification tends 

to produce false negative findings and is 
thus of greatest concern in studies 
which have not found an important 
effect of exposure. Thus, in general it is 
important to ensure that information 
bias is non-differential and, within this 
constraint, to keep it as small as 
possible. Thus, can be argued that the 
aim of data collection is not to collect 
perfect information, but to collect 
information in a similar manner from 
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the groups being compared, even if this 
means ignoring more detailed exposure 
information if this is not available for 
both groups. However, this is not 
always the case (Greenland and Robins, 
1985). 

Assessment of information bias 

Information bias is usually of most 
concern in historical cohort studies or 
case-control studies when information is 
obtained by personal interview. Despite 
these concerns, relatively little 
information is generally available on the 
accuracy of recall of exposures. When 
possible, it is important to attempt to 
validate the classification of exposure or 
disease, e.g., by comparing interview 
results with other data sources such as 
employer records, and to assess the 
potential magnitude of bias due to 
misclassification of exposure. 

Relationship of Selection and 
Information Bias to Confounding 

Selection bias and confounding are not 
always clearly demarcated. In 
particular, selection bias can sometimes 
be viewed as a type of confounding, 
since both can be reduced by controlling 
for surrogates for the determinants of 
the bias (e.g. social class). 
Unfortunately, selection affected by 
exposure and disease generates a bias 
that cannot be reduced in this fashion. 
Some consider any bias that can be 
controlled in the analysis as 
confounding. Other biases are then 
categorized according to whether they 
arise from the selection of study 
subjects (selection bias), or their 
classification (information bias). 

Summary

The greatest concern in 
epidemiological studies usually relates 
to confounding, because exposure has 
not been randomly allocated, and the 
groups under study may therefore be 
noncomparable with respect to their 
baseline disease risk. However, to be a 
significant confounder, a factor must 
be strongly predictive of disease and 
strongly associated with exposure. 
Thus, although confounding is 
constantly a source of concern, the 
strength of confounding is often 
considerably less than might be 
expected (it should be appreciated 
however, that this appearance may be 
illusory, for nondifferential 
misclassification of a confounder which 
is common will usually make the 

confounding appear smaller than it 
really is). 

Provided that information has been 
collected in a standardized manner 
(and it’s accuracy is unrelated to other 
errors), then misclassification will be 
non-differential, and any bias it 
produces will usually be towards the 
null value. In this situation, 
misclassification tends to produce false 
negative findings and is thus of 
greatest concern in studies which have 
not found an important effect of 
exposure; it is of much less concern in 
studies with positive findings, since 
these findings are likely to have been 
even more strongly positive if 
misclassification had not occurred.
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Again, one should appreciate the 
limitations of these observations: it 
may be difficult to be sure that the 
exposure and disease misclassification 
is nondifferential, and nondifferential 

misclassification of a confounder can 
lead to bias away from the null if the 
confounder produces confounding 
away from the null.
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CHAPTER 7: Effect Modification 
(In: Pearce N. A Short Introduction to Epidemiology. 2nd ed. Wellington, CPHR, 2005) 

In the previous chapter I discussed the 
problem of confounding which occurs 
when the exposed and non-exposed 
subpopulations of the source population 
are inherently different in background 
disease risk. This should not be confused 
with effect modification which occurs 
when the measure of the effect of the 
study factor depends on the level of 
another factor in the study population 

(Miettinen, 1974). The term statistical 
interaction denotes a similar phenomenon 
in the observed data. However, the terms 
“interaction” and “effect modification” are 
also used in a variety of other contexts, 
with a variety of meanings. In particular, 
the term “interaction” has different 
meanings for biostatisticians, lawyers, 
clinicians, public health professionals, 
epidemiologists and biologists.

Example 7.1

Katsouyanni et al (1993) 
studied the effects of air 
pollution and high 
temperature in the 
causation of excess 
mortality during a major 
heat wave in Greece in 
July 1987. They found 
that the effects of the 

heat wave were modified 
by the presence (or 
absence) or high air 
pollution levels. In Athens 
(where air pollution levels 
are high) the increase in 
deaths on extremely hot 
days was 97% in Athens, 
but was 33% in other 

urban areas and 27% in 
non-urban areas. Further 
analyses suggested that 
the threshold of effect of 
various air pollutants 
appeared to be lower on 
extremely hot days.

7.1: Concepts of Interaction

The different concepts of interaction will 
be illustrated with data from a 
hypothetical study of the risk of lung 
cancer per 1,000 population (e.g. over a 
five year period) in relation to exposure 
to cigarette smoke and asbestos (Table 
7.1). The risk difference due to smoking 
is 30 per 1,000 in asbestos workers and 9 

per 1,000 person-years in smokers. On 
the other hand, the rate ratio for smoking 
is 7.0 in asbestos workers and 10.0 in 
other people. I will now consider how this 
data might be interpreted by a different 
researchers and policy makers. In each 
instance, it is recognized that it is 
important to prevent or reduce both 
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asbestos exposure and smoking. 
However, in this case the asbestos 
exposure has already occurred and the 
factory has now closed, so our focus is on 
smoking. We want to know whether the 
‘effect” of smoking is “modified” by 
asbestos exposure, i.e. do smoking and 
asbestos exposure “interact”? 

Two Biostatisticians 

Suppose that we first consult a 
biostatistician about how to interpret this 
data. The first biostatistician we talk to 
uses relative risk measures of effect. 
They note that the relative risk for 
smoking and lung cancer is 7.0 (35/5) in 
asbestos workers and 10.0 (10/1) in 
other people. Thus, the effect of smoking 
on lung cancer is less in asbestos workers 
and there is therefore a negative 
statistical interaction between the effects 
of smoking and asbestos (table 7.2). 
They may even fit a multiplicative model 
with an interaction term and show that 
the interaction term is negative. 

We can see the logic of this argument, 
but are somewhat surprised by the 
conclusion, since we can see the very 
high rates in people who both smoke and 
are exposed to asbestos. We therefore 
consult a second biostatistician. This 
“alternative” biostatistician uses the risk 

difference as the effect measure. They 
note that the risk difference for smoking 
and lung cancer is 30 per 1,000 (35 - 5) 
in asbestos workers and 9 per 1,000 (10 
- 1) in other people. Thus, the effect of 
smoking is greater in asbestos workers 
and there is a positive statistical 
interaction between the effects of 
smoking and asbestos (table 7.2). They 
may even fit an additive model with an 
interaction term and show that the 
interaction term is positive. 

We eventually get our two biostatistical 
consultants together and they argue that 
there is no contradiction in the advice 
they have given us. Effect modification 
and statistical interaction are merely 
statistical concepts which depend on the 
methods used. In fact, all secondary risk 
factors modify either the rate ratio or the 
rate difference, and uniformity over one 
measure implies non-uniformity over the 
other (Koopman, 1981; Steenland and 
Thun, 1986), e.g. an apparent additive 
joint effect implies a departure from a 
multiplicative model. Several authors 
(e.g. Kupper and Hogan, 1978; Walter 
and Holford, 1978) have demonstrated 
the dependence of statistical interaction 
on the underlying statistical measure of 
effect, and have therefore argued that 
the assessment of interaction is "model-
dependent".

 

Table 7.1 

Lung cancer risk per 1,000 people (and RR) in relation to exposure to cigarette smoke 
and asbestos 
          Asbestos 
                    Yes      No 
                  ------------------------------------------------------ 
   Smoking   Yes  35/1000 (35.0) 10/1000 (10.0) 
              No   5/1000 (5.0)  1/1000 (1.0) 
 ------------------------------------------------------ 
Rate difference  30/1000  9/1000 
------------------------------------------------------------------------------------- 
Rate ratio  7.0  10.0 
------------------------------------------------------------------------------------- 
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A Lawyer 

Next we consult a lawyer (I do not 
advise this as a real course of action; 
this is just a hypothetical consultation!). 
She/he is also concerned about the 
effect of smoking, but the effect they are 
interested in is “what is the probability 
that my client’s lung cancer was caused 
by their smoking?” If we look at the 
asbestos workers, we find that if they 
smoked their risk of lung cancer was 35 
per 1,000 whereas it was 7 per 1,000 if 
they didn’t smoke. Thus, assuming there 
is no confounding by other factors, then 
of every 35 lung cancer occurring in the 
smokers, 5 would have happened 
anyway, and 30 are additional cases due 
to smoking. Thus, for an individual lung 
cancer case, the probability that smoking 
caused the cancer is 100*30/35 which is 

86% (this is just 100*(R-1)/R where R is 
the relative risk of 1.9). The 
corresponding estimate for other people 
(not exposed to asbestos) is 100*9/10 
which is 90%. Thus, the probability of 
causation by smoking is slightly less in 
asbestos workers and there is therefore 
a negative interaction between the 
effects of smoking and asbestos (table 
7.2). It should be noted that this 
lawyer’s approach is a little simplistic 
(Greenland, 1999), but the key issue 
here is that the “effect” that is being 
measured, and the inference about 
interaction, is different from that of the 
two biostatisticians, although it is more 
consistent with that of the biostatistician 
who uses the relative risk as the 
measure of effect.

 

Table 7.2 

The approaches of different consultants to interpreting the data in table 8.1 

  Size of effect      
  ---------------------------- Inherent  
 Effect Asbestos  Statistical Is there an 
Consultant measure workers Others model Interaction? Direction? 
---------------------------------------------------------------------------------------------------------- 
      
Biostatistician 1 Relative risk 7.0 10.0 Relative risk  Yes  -ve 

Biostatistician 2 Risk difference 30/1000 9/1000 Risk difference Yes  +ve 

Lawyer Probability of 86% 90% Relative risk  Yes  -ve 
 causation 

Clinician Individual risk 30 per 9 per Risk difference Yes  +ve 
  1,000 1,000 

Public health Deaths  30 per 9 per Risk difference Yes  +ve 
worker prevented 1,000 1,000 Risk difference Yes  +ve 

Epidemiologist Combination of 21 cases Not Risk difference Yes  +ve 
 factors to cause out of 35 applicable  
 disease (60%) are 
  due to the 
  combination 
  of exposures
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A Clinician 

Next we consult with a clinician. She/he 
says “I advise my patients to give up 
smoking, and I tell them that if they do 
manage to stop then they will reduce 
their risk of lung cancer. They ask ‘by 
how much?’ So I want to know what the 
reduction in their individual risk will be if 
they give up smoking”. Well, if their 
patient is an asbestos worker then they 
will reduce their risk by 30 per 1,000 
(over five years) by giving up smoking; 
other people will reduce their risk by 9 
per 1,000 (once again, this is a little 
simplistic since it this does not tell us 
exactly how many years of life they will 
gain). Thus, the effect of smoking is 
greater in asbestos workers and there is 
therefore a positive statistical 
interaction between the effects of 
smoking and asbestos (table 8.2). 

A Public Health Worker 

The public health worker that we consult 
has a similar approach to the clinician, 

except that they are concerned about 
the population rather than about 
individual patients. They say “I want to 
conduct population smoking prevention 
campaigns and persuade people to give 
up smoking and that if they do then 
they will reduce their risk of lung 
cancer. I only have a limited amount of 
resources so I want to know if I can 
prevent more cases of lung cancer by 
focusing on asbestos workers, or by 
doing my campaigns in the same 
number of people in the general 
population”. If they prevent 1,000 
asbestos workers smoking, then (once 
there has been time for the reduction in 
risk to start occurring) they will have 
prevented 30 lung cancer cases each 
year. If they prevent 1,000 other people 
from smoking then each year they will 
have prevented 9 cases of lung cancer. 
Thus, the effect of smoking is greater in 
asbestos workers and there is therefore 
a positive statistical interaction between 
the effects of smoking and asbestos 
(table 7.2). 

Figure 7.1  
 
Numbers of cases occurring through background factors, asbestos alone, 
smoking alone, and their combination in people exposed to both factors 

Background Asbestos Smoking Asbestos & 
Smoking 

A S
U U’ A U’’ S

U’”

Cases 1/35 (3%) 4/35 (11%) 9/35 (26%) 21/35 (60%) 
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An Epidemiologist 

I have argued in chapter 1 that 
epidemiology is part of public health, 
and therefore I might be quite content 
to accept the public health worker’s 
approach. However, as an 
epidemiologist I do want to know more 
about the causation of disease, since 
what I learn may be relevant to other 
exposures or other diseases. Thus, I 
may be particularly interested in the 
combination of smoking and asbestos to 
produce cases of lung cancer. Rothman 
and Greenland (1998) have thus 
adopted an unambiguous 
epidemiological definition of interaction 
in which two factors are not 
"independent" if they are component 
causes in the same sufficient cause. This 
concept of independence of effects leads 
to the adoption of additivity of incidence 
rates as the state of "no interaction". 
Thus, the fact that the lung cancer rate 
in the group exposed to both factors 
(35/1000) is greater than the sum of 
the baseline risk (1/1000) plus the 
effect of asbestos alone (5/1000 – 
1/1000) plus the effect of smoking 
alone (10/1000 - 1) indicates that there 
are some cases of disease that are 
occurring due to the combination of 
exposures and which would not have 
occurred if either of the exposures had 
been eliminated. We can do the same 
calculations using the relative risks 
(relative to the group with exposure to 
neither factor) rather than incidence 
rates: the joint effect is 35.0 times, 
whereas it would be 1+(5.0-1)+(10.0-
1)=14.0 if it were additive. This 
situation is summarized in figure 7.1. It 
shows that in the group exposed to both 
factors, 1 case (3%) occurred through 
unknown “background” exposures (U), 4 
cases (11%) through mechanisms 
involving asbestos exposure alone (and 
not smoking) together with unknown 
background exposures (U’), 9 cases 
(26%) occurred through mechanisms 
involving smoking alone (and not 

asbestos) together with unknown 
background exposures (U’’), and 21 
cases (60%) occurred through 
mechanisms involving both factors 
together with unknown background 
exposures (U’’’). This means that 86% 
of the cases (26% + 60%) could have 
been prevented by preventing smoking, 
whereas 71% (11% + 60%) could have 
been prevented by preventing asbestos 
exposure. Thus, the attributable risks 
for the individual factors of smoking 
(86%) and asbestos (71%) sum to 
more than 100% because of the cases 
that occur through mechanisms 
involving both exposures and which 
consequently could be prevented by 
preventing either exposure. 

One apparent exception should be noted 
(Koopman, 1977). If two factors (A and 
B) belong to different sufficient causes, 
but a third factor (C) belongs to both 
sufficient causes, then A and B are 
competing for a single pool of 
susceptible individuals (those who have 
C). Consequently the joint effect of A 
and B will be less than additive 
(Miettinen (1982) reaches a similar 
conclusion based on a model of 
individual outcomes). However, this 
phenomenon can be incorporated 
directly into the causal constellation 
model by clarifying a previous ambiguity 
in the description of antagonism in the 
model's terms. Specifically, the absence 
of B can be included in the causal 
constellation involving A, and vice 
versa. Then, two factors would not be 
"independent" if the presence or 
absence of the factors (or particular 
levels of both factors) were component 
causes in the same sufficient cause 
(Greenland and Poole, 1988; Rothman 
and Greenland, 1998). 

A Biologist 

Finally, it should be stressed that this 
epidemiological concept of 
independence of effects is distinct from 
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some biological concepts of 
independence. For example, Siemiatycki 
and Thomas (1981) give a definition in 
which two factors are considered to be 
biologically independent "if the 
qualitative nature of the mechanism of 
action of each is not affected by the 
presence of absence of the other". 
However, this concept does not lead to 
an unambiguous definition of 
independence of effects, and thus does 
not produce clear analytic implications. 
Rothman's concept of independence is 
at a more abstract conceptual level in 

which a particular biologic model, rather 
than being accepted as the "baseline", is 
itself evaluated in terms of the co-
participation of factors in a sufficient 
cause. For example, two factors which 
act at different stages of a multistage 
process are not independent since they 
are joint components of at least one 
sufficient cause. This occurs irrespective 
of whether they affect each other's 
qualitative mechanism of action (the 
ambiguity in Siemiatycki and Thomas' 
formulation stems from the ambiguity of 
this concept).

7.2 Multiplicative and Additive Models

Rothman's approach is attractive 
because it is based on epidemiological 
concepts which have a clear biologic 
interpretation, and because it leads to 
an unambiguous definition of 
independence of effects which is 
identical to that obtained through 
public health considerations (Rothman 
et al, 1980). However, the analytic 
implications of these concepts are not 
straightforward, since assessing 
independence of effects is usually only 
one of the analytic goals of an 
epidemiological study. Rather, there 
are several other considerations which 
often favour the use of multiplicative 
models.  

First, multiplicative models have 
convenient statistical properties. 
Estimation in non-multiplicative 
models may have problems of 
convergence, and inference based on 
the asymptotic standard errors may be 
flawed unless the study size is very 
large (Moolgavkar and Venzon, 1987).  

Second, it has been argued that 
multiplicative models facilitate the 
assessment of the extent of unknown 
confounding or bias (Cornfield et al, 
1959), although this is not always the 
case.  

Third, if it is desired to keep statistical 
interaction (effect modification) to a 
minimum, then a multiplicative model 
may be more appropriate. It is not 
uncommon for risk factors to have 
approximately multiplicative effects 
(Saracci, 1987). This presumably 
occurs because they are a part of 
common causal processes, although 
other sufficient causes usually also 
operate, and exact multiplicativity may 
not occur. Nevertheless, in this 
situation there may be less masking of 
heterogeneity in calculating an overall 
rate ratio than in calculating an overall 
rate difference; there are also many 
instances of non-multiplicative 
departures from additivity, however 
(Selikoff et al, 1980; Saracci, 1987). 
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7.3: Joint Effects

These considerations imply an apparent 
dilemma. How can an analysis be 
conducted which combines the 
advantages of ratio measures of effect 
with the assessment of independence in 
terms of a departure from additivity? 
These apparently contradictory goals 
can be reconciled in analyses which 
concentrate on the estimation of 
separate and joint effects (Pearce, 
1989). 

Thus, when studying asbestos, smoking 
and lung cancer, relative risks might be 
presented for smoking (in non-asbestos 
workers), asbestos exposure (in non-
smokers) and exposure to both factors, 
relative to persons exposed to neither 
factor. These relative risks would be 
adjusted for all other factors (e.g. age) 
which are potential confounders, but not 
of immediate interest as effect 
modifiers.  

The estimation of separate and joint 
effects may be difficult when the factors 
of interest are closely correlated, and 
there are therefore only small numbers 
of people who are exposed to either 
factor alone. However, when it is 
feasible, this approach combines the 
best features of multiplicative models 
and additive independence assessment, 
but also permits readers with other 
concepts of independence to draw their 
own conclusions (as in table 7.1). 

When the assessment of joint effects is 
a fundamental goal of the study, it can 
be accomplished by calculating stratum-
specific effect estimates, as in Example 
7.1 above. On the other hand, it is less 
clear how to proceed when effect 
modification is occurring, but 
assessment of joint effects is not an 
analytical goal. Conventional statistical 

analysis strategies are based on the 
principle that it is not appropriate to 
calculate an overall effect estimate if 
interaction is present. However, this 
principle is commonly ignored if the 
difference in stratum-specific effect 
estimates is not too great. In fact 
standardized rate ratios (see chapter 
12) have been developed for precisely 
this situation, and will consistently 
estimate meaningful epidemiological 
parameters even under heterogeneity 
(Greenland, 1982). Nevertheless, some 
authors have proposed modeling 
strategies in which the first step in the 
analysis involves testing for statistical 
interaction. A related approach has been 
the development of generalized families 
of models which include the additive 
and multiplicative models as special 
cases. An alternative general strategy 
can be based on epidemiological 
considerations (Pearce, 1989). The key 
difference is that interaction is assessed 
(rather than tested) in terms of a 
departure from additivity in order to 
elaborate an observed effect, rather 
than being tested for departure from an 
arbitrary effect measure as an essential 
initial analytic step. This procedure can 
be achieved within the confines of 
statistically convenient multiplicative 
models through the analysis of separate 
and joint effects. 
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Summary

The terms interaction and effect 
modification are used in a variety of 
contexts, with a variety of meanings. In 
particular, the term “interaction” has 
different meanings for biostatisticians, 
lawyers, clinicians, public health 
professionals, epidemiologists and 
biologists. In each instance, they are 
interested in the same question, namely 
does the effect of exposure A depend on 
whether exposure B is also present (or 
absent)? However, the word “effect” has 
different meanings in different contexts. 
In contrast to definitions based on 
statistical concepts, Rothman has 
adopted an unambiguous 
epidemiological definition of interaction 

in which two factors are not 
"independent" if they are component 
causes in the same sufficient cause. This 
leads to the adoption of additivity of 
incidence rates as the state of "no 
interaction". However, there are other 
considerations which generally favor the 
use of multiplicative models. This 
implies an apparent dilemma as to how 
an analysis can be conducted which 
combines the advantages of ratio 
measures of effect with the assessment 
of independence in terms of a departure 
from additivity. These apparently 
contradictory goals can be reconciled 
through the analysis of separate and 
joint effects.
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Conducting a study 
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CHAPTER 8: Measurement of Exposure and 
Health Status 
(In: Pearce N. A Short Introduction to Epidemiology. 2nd ed. Wellington, CPHR, 2005)

In this chapter I briefly review the 
various options for measuring exposure 
and disease status. In the following 

chapters I then discuss the practicalities 
of conducting cohort, case-control and 
cross-sectional studies.

8.1: Exposure

As discussed in chapter 1, epidemiological 
studies involve a wide variety of 
exposures ranging from the population 
level to the individual and micro-levels. 
The term “exposure” is thus used 
generically to refer to any factor that is 
under study, and exposures may include 
population factors (e.g. income 
inequality), individual-level socio-
economic factors (e.g. income), physical 
environmental factors (e.g. air pollution), 
aspects of individual lifestyle (e.g. diet), 
as well as “exposures” measured at the 
level of the body, (e.g. total body burden 
of dioxin), organ (e.g. the concentration 
of asbestos in the lung), cell, or molecule 
(e.g. DNA adducts). These various 
situations are discussed here briefly; a 
more detailed discussion can be found in 
Armstrong et al (1992). 

Exposure and Dose 

Strictly speaking, the term exposure 
refers to the presence of a substance 
(e.g. fine particulate matter) in the 
external environment, whereas the term 
dose refers to the amount of substance 
that reaches susceptible targets within 
the body, such as the airways. In some 
situations (e.g. in a coal mine) 
measurements of external exposures 

may be strongly correlated with internal 
dose, whereas in other situations (e.g. 
environmental lead exposure) the dose 
may depend on individual lifestyle and 
activities and may therefore be only 
weakly correlated with the 
environmental exposure levels. 

Exposure levels can be assessed with 
regard to the intensity of the substance 
in the environment (e.g. dust 
concentration in the air) and the 
duration of time for which exposure 
occurs. The risk of developing disease 
may be much greater if the duration of 
exposure is long and/or the exposure is 
intense, and the total cumulative 
exposure may therefore be important. 
For protracted etiologic processes, the 
time-pattern of exposure may be 
important and it is possible to assess 
this by examining the separate effects of 
exposures in various time windows prior 
to the occurrence and recognition of 
clinical disease (Pearce, 1992). For 
example, in cancer studies recent 
exposures may not be relevant since the 
cancer may have first become 
established some years previously 
(Pearce, 1988). Similarly, recent work 
suggests that occupational asthma is 
most likely to occur after about 1-3 
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years of exposure to a sensitising agent 
(Antó et al, 1996). 

General Approaches to Exposure 
Assessment 

Methods of exposure measurement 
include personal interviews or self-
administered questionnaires (completed 
either by the study participant or by a 
proxy respondent), diaries, observation, 
routine records, physical or chemical 
measurements on the environment, or 
physical or chemical measurements on 
the person (Armstrong et al, 1992). For 
example, table 8.1 summarizes the types 
of exposures data most commonly used 
in occupational epidemiology studies 
(Checkoway et al, 2004). Measurements 
on the person can relate either to 
exogenous exposure (e.g. airborne dust) 
or internal dose (e.g. plasma cotinine); 
the other measurement options (e.g. 
questionnaires) all relate to exogenous 
exposures. 

Demographic Factors 

In most instances, information on 
demographic factors such as age, 
gender and ethnicity can be obtained in 
a straightforward manner from routine 
health care records or with 
questionnaires. In studies focusing on 
ethnicity, the etiologically relevant 
definition will depend on the extent to 
which an ethnic difference is considered 
to be due to genetic and/or cultural and 
environmental factors, but the available 
information will vary from country to 
country depending on historical and 
cultural considerations. For example, in 
New Zealand, Māori ethnicity is defined 
as ‘a person who has Māori ethnicity and 
chooses to identify as Māori’ (Pomare et 
al, 1992), whereas some other countries 
use solely biologically-based definitions 
of “race” or ethnicity (Polednak, 1989). 

Socio-economic status poses more 
significant measurement problems. It 

can be measured in a variety of ways, 
including occupation, income, and 
education (Liberatos et al, 1988; 
Berkman and MacIntyre, 1997). These 
measures may pose problems in some 
demographic groups; for example, 
occupation and income may be poor 
measures of socio-economic status in 
women, for whom the total family 
situation may reflect their socio-
economic status better than their 
individual situation, and measures of 
socio-economic status in children must 
be based on the situation of the parents 
or the total family situation. 
Nevertheless, the various measures of 
socio-economic status are strongly 
correlated with each other, and asthma 
epidemiology studies are usually based 
on whichever measures are available, 
unless socio-economic status is the main 
focus of the research and it is necessary 
to obtain more detailed information. 

Questionnaires 

Traditionally, exposure to most non-
biological risk factors (e.g. tobacco 
smoking) has been measured with 
questionnaires, and this approach has a 
long history of successful use in 
epidemiology (Armstrong et al, 1992). 
Questionnaires may be self-administered 
(e.g. postal questionnaires) or 
interviewer-administered (e.g. in 
telephone or face-to-face interviews) 
and may be completed by the study 
subject or by a proxy (e.g. parental 
completion of questionnaires in a study 
of children, or completion by the spouse 
of deceased cases). The validity of 
questionnaire data also depends on the 
structure, format, content and wording 
of questionnaires, as well as methods of 
administration and selection and training 
of interviewers (Armstrong et al, 1992).
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Table 8.1 

Types of exposure data commonly used in occupational epidemiology studies 
(Source: Adapted from Checkoway et al, 2004) 

• Ever employed in the industry 
• Duration of employment in the industry 
• Ordinally ranked jobs or tasks 
• Job-exposure matrices 
• Quantified personal measurements

Example 8.1

Raum et al (2001) 
studied the impact of 
maternal socio-economic 
status on intrauterine 
growth in the former 
west and East Germany. 
Information on socio-
demographic or lifestyle 
factors and pregnancy 
outcome was available 
for 3,374 live-born 
singletons from West 
Germany (1987/88) and 
3070 from East Germany 
(1990/91). Women were 
recruited during 

pregnancy and given a 
self-administered 30-
page questionnaire 
covering socio-
demographic, 
psychosocial, nutritional, 
environmental and 
occupational factors. The 
two school systems were 
not identical, but in each 
system maternal 
educational level was 
grouped into five 
categories. Women with 
the lowest education had 
a significantly elevated 

risk of small-for-
gestational-age (SGA) 
newborns compared to 
women with the highest 
education in both the 
west (OR = 2.58, 95% 
CI 1.17-5.67) and the 
east (OR = 2.77, 95% CI 
1.54-5.00). The authors 
concluded that social 
inequalities existed and 
caused health 
inequalities in both the 
West, and in the former 
socialist country of East 
Germany.

Example 8.2 

Vartia (2001) studied 
the consequences of 
workplace bullying in the 
municipal sector in 
Helsinki, Finland. Every 
35th member of the 
Municipal Officials Union 
was selected and 1037 
(65.5%) responded to a 
postal questionnaire. A 
definition of bullying was 
provided and study 

participants were asked 
if they felt themselves 
subjected to such 
behaviour, or if they had 
observed someone else 
at their workplace being 
bullied. They were also 
asked about the 
frequency and duration 
of such acts. Both the 
targets of bullying and 
the observers reported 

more general stress and 
mental stress reactions 
than did respondents 
from workplaces with no 
bullying. The targets 
of bullying used sleep-
inducing drugs and 
sedatives more often 
than did the 
respondents who were 
not bullied.
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Environmental Measurements and 
Job-Exposure Matrices 

In many studies, e.g. community-based 
case-control studies, questionnaires are 
the only source of exposure information. 
However, in some instances, particularly 
in occupational studies, questionnaires 
may be combined with environmental 
exposure measurements (e.g. industrial 
hygiene surveys) to obtain a quantitative 
estimate of individual exposures. Table 
8.2 shows environmental measurements 
in an asbestos textile plant in South 
Carolina (Dement et al, 1983; 
Checkoway et al, 2004). It shows that 

for each job title, exposure levels 
decreased over time, but increased again 
during the 1966-75 time period. Within 
each time period, the highest exposures 
were in raw fiber handling and the 
lowest were in general area workers. 
This historical exposure information can 
be combined with information from 
employment records to obtain exposure 
estimates for individual workers. For 
example, table 5.3 shows the cumulative 
exposure for a worker who worked as a 
card operator during 1933-1938 and 
then worked in “clean-up” during 1939-
1948.

Example 8.3 

Saracci et al (1984a) 
conducted a historical 
cohort study of mortality 
and cancer incidence of 
workers exposed to 
made-made vitreous 
fibres at 13 European 
plants. At 12 of the 
plants an environmental 
survey was conducted to 
measure present 
concentrations of fibres 
in air samples. This was 
used to create a job-
exposure matrix. Within 

each plant, job/plant 
areas were grouped into 
six main occupational 
categories: not 
specified, office, 
preproduction, 
production, secondary 
processes and 
maintenance. For each 
worker a cumulative 
exposure index was 
created by multiplying 
the time spent in each 
job category by the 
mean concentration of 

respirable fibres in the 
job category. The 
relative risk of lung 
cancer was elevated, 
particularly in the group 
with 30 years or more 
since first employment 
(RR=1.92, 95% CI 1.17-
3.07). There was a 
tendency for the risk to 
increase with cumulative 
exposure, but the 
pattern was not 
consistent.

Table 8.2 
 
Asbestos concentrations (fibers/cc) in job categories in an asbestos textile plant 
(Source: Adapted from Checkoway et al, 2004) 
 
Job category 1930-35 1936-45 1946-65 1966-75 
General area  10.8  5.3  2.4  4.3 
Card operators  13.3  6.5  2.9  5.3 
Clean-up  18.1  8.8  4.0  7.2 
Raw fiber handling  22.8  11.0  5.0  9.0 
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Table 8.3 

Example of an exposure history of an individual worker 

Job Years Mean exposure Cumulative exposure 
Card operator 1933-35  10.8  32.4 
Card operator 1936-1938  6.5  41.9 
Clean-up 1939-45  8.8  103.5 
Clean-up 1946-48  4.0  115.5

Quantified Personal Measurements 

In some instances, quantified personal 
exposure measurements may be 
available, e.g. in radiation workers 
wearing radiation dosimeters 
(Checkoway et al, 2004). This 
information is invaluable when it is 
available, but it is rarely available for 
historical exposures with the exception 
of some industries such as the nuclear 
power industry. Such information can 
of course be collected prospectively. 
This is rarely practical for cohort 
studies of rare diseases with long 
latency periods (e.g. cancer), but is 
more appropriate for cohort studies of 
relatively common conditions. For 
example, infant cohort studies of 
respiratory disease frequently 
prospectively collect information on 
individual levels of allergen exposure 
(e.g. Lau et al, 2001). 

Quantified personal exposure 
measurements can also be used in 
case-control studies to estimate 
historical exposures. However, a 
potential problem in this situation is 
that exposure may have changed over 
time, or study participants may change 
their behaviour as a result of having 
been diagnosed with disease. This has 
been a particular issue in case-control 
studies of electromagnetic field 
exposure and childhood leukemia 
where it has been argued that current 
personal exposure measurements may 
be inferior to “wire code” information 
(i.e. whether the wiring to the house is 
underground, or by overhead wires, 
etc) in estimating historical exposures 
(Neutra and del Pizzo, 1996).
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Example 8.4 

Wing et al (1991) 
conducted a historical 
cohort mortality study 
among workers at Oak 
Ridge National 
Laboratory, Tennessee. 
Individual exposures to 
external penetrating 
radiation, primarily 
gamma rays, were 
measured using pocket 
ionising chambers from 
1943 until June 1944, 

film badges from then 
until 1975, and 
thermoluminescent 
dosimeters since 1975. 
This information was 
used to estimate 
individual exposures 
over time. After 
accounting for age, birth 
cohort, socio-economic 
status, and active 
worker status, external 
radiation with a 20-year 

exposure lag (i.e. 
exposures were only 
considered up until 20 
years previously) was 
associated with an 
increased risk of death 
(2.68% increase per 10 
mSv cumulative 
exposure), particularly 
from cancer (4.94% 
increase per 10 mSv).

Biomarkers 

More recently, there has been increasing 
emphasis on the use of molecular 
markers of internal dose (Schulte, 
1993). In fact, there are a number of 
major limitations of currently available 
biomarkers of exposure (Armstrong et 
al, 1992), particularly with regard to 
historical exposures (Pearce et al, 1995). 
For example, serum levels of 
micronutrients reflect recent rather than 
historical dietary intake (Willett, 1990). 
Some biomarkers are better than others 
in this respect (particularly markers of 
exposure to biological agents), but even 
the best markers of chemical exposures 
usually reflect only the last few weeks or 
months of exposure. On the other hand, 
with some biomarkers it may be possible 
to estimate historical levels provided that 
certain assumptions are met. For 
example, it may be possible to estimate 
historical levels of exposure to pesticides 
(or contaminants) from current serum 
levels provided that the exposure period 
is known, and the half-life is known. 
Similarly, information on recent 

exposures can be used if it is reasonable 
to assume that exposure levels (or at 
least relative exposure levels) have 
remained stable over time (this may be 
particularly relevant in occupational 
studies), and have not been affected by 
lifestyle changes, or by the occurrence of 
the disease. However, if the aim is to 
measure historical exposures, then 
historical information on exposure 
surrogates may be more valid than direct 
measurements of current exposure or 
dose levels. This situation has long been 
recognised in occupational epidemiology, 
where the use of work history records in 
combination with a job-exposure matrix 
(based on historical exposure 
measurements of work areas rather than 
individuals) is usually considered to be 
more valid than current exposure 
measurements (whether based on 
environmental measurements or 
biomarkers) if the aim is to estimate 
historical exposure levels (Checkoway et 
al, 2004). On the other hand, some 
biomarkers have potential value in 
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validation of questionnaires which can 
then be used to estimate historical 
exposures. Furthermore, biomarkers of 
internal dose may have relatively good 
validity in studies involving an acute 
effect of exposure. 

A more fundamental problem of 
measuring internal dose with a 
biomarker is that it is not always clear 
whether one is measuring the exposure, 
the biological effect, or some stage of 
the disease process itself (Saracci, 
1984b). Thus the findings may be 
uninterpretable in terms of the causal 
association between exposure and 
disease. When it is known that the 
biologically effective dose is the most 
appropriate measure, then the use of 
appropriate biomarkers clearly has some 
scientific advantages. However, choosing 
the appropriate biomarker is a major 
dilemma, and biomarkers are frequently 
chosen on the basis of an incomplete or 
erroneous understanding of the etiologic 
process (or simply because a particular 
marker can be measured). An 

environmental exposure (e.g. tobacco 
smoke) may involve hundreds of 
different chemicals, each of which may 
produce hundreds of measurable 
biological responses (there are 
exceptions to this, of course, such as 
environmental lead exposure, but most 
environmental exposure involves 
complex mixtures). A biomarker typically 
measures one of the biological responses 
to one of the chemicals. If the chosen 
biomarker measures the key etiological 
factor, then it may yield relatively good 
exposure data; however, if a biomarker 
is chosen which has little relationship to 
the etiological component of the complex 
exposure mixture then the biomarker will 
yield relatively poor exposure data. 

A further major problem with the use of 
biomarkers is that the resulting expense 
and complexity may drastically reduce 
the study size, even in a case-control 
study, and therefore greatly reduce the 
statistical power for detecting an 
association between exposure and 
disease. 

Example 8.5 

Ross et al (1992) studied 
urinary aflatoxin 
biomarkers and risk of 
hepatocellular carcinoma  
as part of an ongoing 
prospective study of 
18,244 middle-aged men 
in Shanghai. After 
35,299 person-years of 

follow-up, a nested case-
control study was 
conducted based on the 
22 identified cases of 
liver cancer, and 140 
density-matched 
controls (matched for 
age and neighbourhood 
or residence). The cases 

of liver cancer were 
more likely than controls 
to have detectable 
concentrations of 
aflatoxin metabolites 
(OR = 2.4, 95% CI 1.0-
5.9).

Thus, questionnaires and environmental 
measurements will continue to play a 
major role in exposure assessment in 
epidemiology, but biomarkers may be 
expected to become increasingly useful 
over time, as new techniques are 

developed. The emphasis should be on 
using “appropriate technology” to obtain 
the most practical and valid estimate of 
the etiologically relevant exposure. The 
appropriate approach (questionnaires, 
environmental measurements or 
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biological measurements) will vary from 
study to study, and from exposure to 
exposure within the same study, or 

within the same complex chemical 
mixture (e.g. in tobacco smoke).

8.2: Health Status 

The type of information required for  
measuring health status in 
epidemiological studies may be different 
from that which is required in clinical 
practice. As with exposure data, the key 
issue is that information should be of 
similar quality for the various groups 
being compared. For example, suppose 
that the bladder cancer incidence in a 
particular geographical area is being 
compared with national incidence rates; 
then it would be inappropriate to 
conduct a pathological review and 
reclassification of the cases of the cancer 
identified in the area, since such a 
reclassification had not been made for 
the national data and the information 
would not be comparable. Rather, the 
cancer cases in the area should be 
classified exactly as they had been 
classified in routine national cancer 
statistics. Thus, the emphasis should be 
on the comparability of information 
across the various groups being 
compared. 

The types of health outcome data used 
in epidemiological studies include: 
mortality; disease registers; health 
service records; and morbidity surveys. 
These can be grouped into data based 
on routinely collected records, and 
morbidity data that is collected for a 
specific epidemiologic study. 

Routine Records 

Most countries maintain comprehensive 
death registration systems at the 
national or regional levels, and cause of 

death information for identified deaths 
can be obtained by requesting copies of 
death certificates from national, state, or 
municipal vital statistics offices. In most 
instances the causes of death are coded 
by a nosologist trained in the rules 
specified in the International 
Classification of Diseases (ICD) volumes 
compiled by the World Health 
Organisation. Revisions to the ICD 
coding are made about every ten years, 
and in some instances the ICD code for a 
particular cause of death may change 
(Checkoway et al, 2004). 

Some countries or states also maintain 
incidence registers for conditions such as 
cancer, congenital malformations or 
epilepsy. These have most commonly 
been established for cancer registration 
and the International Agency for 
Research on Cancer (IARC) has been 
attempting to encourage the 
establishment of cancer registries and to 
standardise methods of cancer 
registration throughout the world 
(Jensen et al, 1991). Provided that 
registration is relatively complete, then 
cancer registrations can provide valuable 
additional health status information (and 
increase the number of identified cases) 
in a cohort study. Furthermore, cancer 
registries are invaluable for identifying 
newly diagnosed cases who can be 
interviewed (while they are still alive) for 
population-based case-control studies. 

Many Western countries have notification 
systems for occupational diseases. For 
example, in the United Kingdom the 
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Surveillance of Work Related and 
Occupational Respiratory Disease 
(SWORD) project was established in 
1989 as a national surveillance scheme 
for occupational respiratory disease 
(Meredith et al, 1991). 

As discussed in chapter 9, other 
routinely collected records can be used  

for determining health status in cohort 
studies, or to create informal “registers” 
for identifying cases for case-control 
studies; these include hospital admission 
records, health insurance claims, health 
maintenance organisation (HMO) 
records, and family doctor (general 
practitioner records). 

Example 8.6

Jones et al (1998) 
performed a record 
linkage study of pre-
natal and early life risk 
factors for childhood 
onset diabetes mellitus. 
They identified 160 boys 
and 155 girls born 
during 1965-1986 who 
had been admitted to 
hospital in Oxfordshire, 
England with a diagnosis 
of diabetes during 1965-
1987. For each case, up 
to eight controls were 
chosen from records for 
live births in the same 
area, matched on sex, 
year of birth and hospital 
or place of birth. They 

then linked the hospital 
record for each child to 
all of that child’s hospital 
records and to his or her 
mother’s maternity 
record. There were no 
significant associations 
between subsequent 
diabetes and 
birthweight, gestational 
age, birthweight for 
gestational age, 
maternal age and parity. 
There were non-
significantly increased 
risks with not 
breastfeeding (OR=1.33, 
95% CI 0.76-2.34) and 
with diabetes recorded 
in the mother during 
pregnancy (OR=5.87, 

95% CI 0.90-38.3), and 
a significantly raised risk 
with pre-eclampsia or 
eclampsia during 
pregnancy (OR=1.48, 
95% CI 1.05-2.10). 
They hypothesized that 
pre-eclampsia may be 
the result of an 
immunogenetic 
incompatibility between 
mother and fetus, and 
that this early 
immunological 
disturbance may be 
related to the incidence 
of diabetes later in life.

Morbidity Surveys

In some circumstances, routine records 
may not be available for the health 
outcome under study, or may not be 
sufficiently complete or accurate or use 
in epidemiological studies. Although this 
could in theory apply to mortality 
records, more commonly this is an issue 
for non-fatal conditions, particularly 
chronic diseases such as respiratory 
disease and diabetes. Such morbidity 
surveys may involve clinical 
examinations (e.g. a clinical history and 

peak flow measurements for asthma), 
more invasive testing (e.g. blood tests 
for diabetes), questionnaires, or a 
combination of these methods. 

To take the example of asthma, the 
essential feature of the condition (at 
least in clinical and epidemiological 
terms) is variable airflow obstruction 
which can be reversed by treatment or is 
self-limiting (Pearce et al, 1998). This 
poses several problems with the use of 
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"diagnosed asthma" in asthma 
prevalence studies, since the diagnosis 
of "variable airflow obstruction" usually 
requires several medical consultations 
over an extended period. It is therefore 
not surprising that several studies have 
found the prevalence of physician-
diagnosed asthma to be substantially 
lower than the prevalence of asthma 
symptoms. Such problems of differences 
in diagnostic practice could be minimised 
by using a standardised protocol for 
asthma diagnosis in prevalence studies. 
However, this is rarely a realistic option 
since it requires repeated contacts 

between the study participants and 
physicians, and this is not possible or 
affordable in large-scale epidemiological 
studies. Thus, most epidemiological 
studies must, by necessity, focus on 
factors which are related to, or 
symptomatic of, asthma but which can 
be readily assessed on a particular day. 
The main options in this regard are 
symptoms and physiological 
measurements (Pearce et al, 1998). In 
particular, standardised symptoms 
questionnaires have been developed for 
use in adults (Burney et al, 1994) and 
children (Asher et al, 1995). 

Example 8.7 

Dowse et al (1990) 
studied the prevalence 
of non-insulin dependent 
diabetes mellitus 
(NIDDM) in adults aged 
25-74 years in Mauritius. 
A random sample of 
5,892 individuals was 
chosen and 5,080 
(83.4%) participated. 
They used a 75g oral 
glucose tolerance test 
with fasting and 2-h post 
load blood collection. 
Glucose tolerance was 

classified according to 
the World Health 
Organisation (WHO) 
criteria (World Health 
Organisation, 1985). The 
prevalence of NIDDM 
was similar in men 
(12.1%) and women 
(11.7%). Age and sex-
standardised prevalence 
was similar in Hindu 
Indians (12.4%), Muslim 
Indians (13.3%), Creoles 
(10.4%) and Chinese 
(11.9%). The authors 

commented that the 
findings in Indians were 
similar to those in other 
studies of Indian migrant 
communities, but the 
findings in Creoles and 
Chinese were 
unexpected. “Potent 
environmental factors 
shared between ethnic 
groups in Mauritius may 
be responsible for the 
epidemic of glucose 
intolerance”.

 
Health status can also be measured by 
more general morbidity and “quality of 
life” questionnaires. Perhaps the most 
widely used questionnaire has been the 
Medical Outcomes Study Short Form 
(SF-36) (Ware, 1993). This includes 
scales to measure physical functioning, 

role functioning, bodily pain, mental 
health, and general health perceptions. 
The SF-36 scales have been widely used 
in clinical research in a wide variety of 
populations to assess overall health 
status.
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Summary 

Methods of exposure measurement 
include personal interviews or self-
administered questionnaires (completed 
either by the study participant or by a 
proxy respondent), diaries, observation, 
routine records, physical or chemical 
measurements on the environment, or 
physical or chemical measurements on 
the person. Measurements on the person 
can relate either to exogenous exposure 
(e.g. airborne dust) or internal dose 
(e.g. plasma cotinine); the other 
measurement options (e.g. 
questionnaires) all relate to exogenous 
exposures. Traditionally, exposure to 
most non-biological risk factors (e.g. 
cigarette smoking) has been measured 
with questionnaires (either self-
administered or interviewer-
administered), and this approach has a 
long history of successful use in 
epidemiology. Questionnaires may be 
combined with environmental exposure 
measurements (e.g. pollen counts, 
industrial hygiene surveys) to obtain a 
quantitative estimate of individual 
exposures. More recently, there has 
been increasing emphasis on the use of 
molecular markers of internal dose 

(Schulte, 1993). However, 
questionnaires and environmental 
measurements have good validity and 
reproducibility with regard to current 
exposures and are likely to be superior 
to biological markers with respect to 
historical exposures. The emphasis 
should be on using “appropriate 
technology” to obtain the most practical 
and valid estimate of the etiologically 
relevant exposure.  

Similar considerations apply to the 
collection of information on health 
status. Once again, it is important that 
the information obtained should be of 
comparable quality in the exposed and 
non-exposed populations. With this 
proviso, the specific methods used will 
differ according to the hypothesis and 
population under study, but the main 
options include use of routine records 
(mortality, incidence, hospital admission, 
health insurance, general practitioner, 
etc) and the mounting of a special 
morbidity survey (using clinical 
examinations, biological testing or 
questionnaires). 
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CHAPTER 9: Cohort Studies 
(In: Pearce N. A Short Introduction to Epidemiology. 2nd ed. Wellington, CPHR, 2005)

As discussed in chapter 2, an incidence 
study is a subtype of longitudinal study 
in which the outcome measure is 
dichotomous (e.g. death or disease 
incidence). Perhaps the simplest type of 
incidence study involves “descriptive” 
analyses using routine mortality or 
incidence records for a defined 
geographic population. For example, 
most countries have comprehensive 
death registration schemes, as well as 
regular national censuses, a population 
register, or other methods of estimating 
population numbers. These can then be 
used, as the numerator and denominator 
respectively, to calculate overall national 
death rates, as well as the death rates 
by age-group and gender. In some 
countries, information may also be 
available to calculate death rates by 
other demographic variables such as 
ethnicity, socio-economic status, 
employment status, occupation or 

geographical area. However, the validity 
of such analyses may be questionable, 
because in most countries death 
certificates (or other routine records 
such as cancer registration records) are 
not linked directly to the corresponding 
population records. Thus, problems may 
occur if factors such as ethnicity are 
coded differently on the death records 
and on the population records. 
Nevertheless, such “descriptive” 
analyses, have played a major role in 
identifying public health problems and 
suggesting priorities for public health 
research. 

However, the limitations of analyses 
based on routine records usually mean 
that a specific “cohort” must be 
constructed for many epidemiologic 
studies. In this chapter I discuss the 
practicalities of conducting a cohort 
study.

9.1: Defining the source population and risk period

Community-based cohort studies 

For studies investigating 
environmental factors, or general 
lifestyle (diet, exercise, etc) a cohort 
study may be based on a particular 
community which is followed (usually 
prospectively) over time. For example, 
a cohort may be based on “all persons 
aged 20 years or more” living in a 
particular city or county in a particular 
year. This would usually require a 
special survey to be conducted at the 
start of the follow-up period, with 

further surveys being conducted at 
regular intervals.  

More specific cohorts 

Cohorts may also be constructed not 
only on the basis of more specific 
exposures. Perhaps the most common 
example of this approach involves 
studies that are based on workers in a 
particular factory or industry 
(Checkoway et al, 2004). Such studies 
may be based on historical records, 
enabling follow-up to be conducted 
retrospectively. Typically, such a 
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historical cohort study might involve “all 
workers who worked for at least one 
month in the factory at any time during 
1970-1999”. The list of such workers 
can be enumerated using personnel 
records which also provide information 
on their job titles and departments 
(which can be used to estimate their 
historical exposures).  

Comparison populations 

In community-based cohorts, 
comparisons are usually made internally 
between study participants exposed and 
those not exposed to a particular risk 
factor (e.g. low dietary beta carotene 
intake compared with high dietary beta 
carotene intake). 

In studies of specific populations, an 
internal comparison may still be 
possible, e.g. by comparing workers 
with high benzene exposure to those 
with low benzene exposure. However, in 
some instances this may not be possible 
because good individual exposure 
information is not available (apart from 
the fact that workers in the factory 
received high exposure on the average) 
or because there is not sufficient 
variation in exposure within the 
population (e.g. because everyone who 
worked in the factory had high 
exposure). In this situation, an external 
comparison may be made, e.g. with 
national death rates or cancer 
registration rates. In this situation, the 
source population for the study is 
effectively the national population, and a 
comparison is being made between the 
subgroup in the source population that 
worked in a particular factory (for 
example) and the entire source 
population. Ideally the comparison 
should be made between the exposed 
group and the source population minus 
the exposed group (i.e. everyone else in 

the country who did not work in the 
factory). However, this is rarely feasible 
in practice, and is usually a trivial 
problem if the exposure is rare. Thus, 
the comparison is usually made between 
the exposed group and the national 
population as a whole. 

The risk period 

Once the source population has been 
defined, then the risk period must also 
be specified. It is important that the risk 
period is the same for the two or more 
groups being compared. For example, it 
would be inappropriate to compare 
deaths from ischaemic heart disease in 
two different communities at two 
different time periods, since there is a 
continuing decline in IHD mortality, and 
spurious differences between the 
communities may be observed if they 
are not studied over the same risk 
period.  

In a historical cohort study, participants 
may be followed from some date in the 
past (e.g. the date the factory opened) 
up until the present (or some recent date 
for which death records or cancer 
registration records are complete). In a 
prospective cohort study, participants 
may be followed from the present until 
some specified future date (e.g. a ten-
year follow-up of participants in a recent 
survey). In both instances, not all study 
participants will be followed for the 
entire risk period. For example, someone 
who moved into the community during 
the risk period and was “recruited” 
during a later survey would only be 
followed from the time of that survey. 
Similarly, someone who emigrated 
during the risk period would only be 
followed until their date of emigration.
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Example 9.1

The Renfrew/Paisley 
study was based on two 
adjacent urban burghs 
considered to be typical 
of the West of Scotland. 
During 1972-1976, men 
and women aged 
between 45 and 64 and 
identified by door-to-
door census as living in 
Renfrew and Paisley 
were invited to take 
part. The response rate 
was 80% (7,052 men 
and 8,354 women). 
Participants completed a 
questionnaire which 

included self-reported 
smoking history, 
occupation, address, 
age, gender, and 
respiratory symptoms. 
Study participants were 
“flagged” at the National 
Health Service Central 
Register in Edinburgh 
and followed for 20 
years. Hart et al (2001) 
reported that high lung 
cancer mortality risks 
were seen for manual 
compared with non-
manual workers. The 
risk reduced when 

adjusted for smoking, 
and reduced further 
when adjusted for lung 
function, phlegm and 
(area) deprivation 
category. They 
concluded that the social 
class difference in lung 
cancer mortality was 
explained by poor lung 
health, deprivation and 
poor socio-economic 
conditions throughout 
life, in addition to 
smoking. 

Example 9.2 

Rafnsson et al (2001) 
studied cancer incidence 
in a cohort of 1690 flight 
attendants working with 
two airline companies in 
Iceland. The total 
number of person-years 
of follow-up was 27,148. 
Among the 1,532 
women flight 

attendants, there were 
64 cases of cancer, 
whereas 51.6 were 
expected on the basis of 
national cancer 
incidence rates 
(RR=1.2). There was a 
particularly elevated risk 
for breast cancer in 
those who had been 

hired in 1971 or later 
and therefore had had 
the heaviest exposure to 
cosmic radiation at a 
young age (RR=4.1). 
The authors concluded 
that the association may 
be due to cosmic 
radiation or disturbance 
of circadian rhythm.
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9.2: Measuring exposure 

As discussed in chapter 8, there are a 
variety of possible methods for 
measuring exposure in cohort studies. 
These include routine records, 
questionnaires, environmental 
measurements, Job-Exposure-Matrices 
(JEM), quantified personal 
measurements, and biomarkers of 
exposure. 

Ideally, exposures should be measured 
continuously, or at least at regular 
intervals, through the risk period (i.e. 
the period of follow-up). For some risk 
factors (e.g. for demographic factors 
such as age, gender and ethnicity), the 
risk factor status is unlikely to change 
during the risk period, and can simply be 
ascertained at baseline. For other 
exposures that do change over time 
(e.g. smoking, diet, occupational 

exposures) regular surveys, or regular 
examination of routine records, may be 
desirable to update the exposure 
information. However, in many studies 
this is not feasible and information is 
only collected in a baseline survey; it is 
then necessary to assume that the 
exposure level (e.g. serum cholesterol 
level) has not changed meaningfully 
during the subsequent follow-up. 

In occupational studies, more detailed 
exposure information may be available 
through the combination of personnel 
records (which include changes of job 
title and department) and Job-Exposure-
Matrices (JEMs) based on workplace 
exposure surveys and/or personal 
measurements in a subgroup of the 
workforce (see chapter 8). 

 

Example 9.3

Prescott et al (2004) 
studied vital exhaustion 
(fatigue, hopelessness 
and depression) as a 
risk factor for 
ischaemic heart disease 
(IHD) in 4084 men and 
5479 women in 
Copenhagen. The study 
was based on 
participants in the 
Copenhagen City Heart 
Study, and the 
analyses were based on 
10,135 people who 
attended the third 
follow-up examination 
in 1991-1993. 
Cardiovascular risk 
factors were assessed 
by a self-administered 

questionnaire checked 
with the participant by 
trained staff, and by 
various laboratory 
tests. Vital exhaustion 
was assessed using a 
17-item questionnaire. 
Participants were 
followed until 31 
December 1997 for 
fatal and non-fatal IHD, 
with the information 
being obtained from 
the National Board of 
Health and National 
Hospital Discharge 
Register respectively. 
Subjects with self-
reported and verified 
IHD prior to enrolment 
were excluded. During 

follow-up, 483 
experienced an IHD 
event, of which 25% 
were fatal, and 1559 
subjects died from all 
causes. All but 4 of the 
17 items were 
significantly associated 
with IHD with 
significant relative risks 
ranging from 1.36 to 
2.10. The RR for IHD in 
those with a vital 
exhaustion score of 10 
or more was 2.57 
(95% CI 1.65-4.00) 
and this altered little 
after adjustment for 
biological, behavioural 
and socioeconomic risk 
factors.
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9.3 Follow-up 

Vital status ascertainment 

In some instances, particularly in 
community based studies, follow-up 
may involve regular contact with the 
study participants, including repeated 
surveys of health status. Perhaps more 
commonly, follow-up may not involve 
further contact with the study 
participants, but may be done by 
routine record linkage.  

For example, study participants may be 
followed over time by linking the study 
information with national death records, 
or incidence records (e.g. a national 
cancer registry) as well as with other 
record systems (e.g. social security 
records, drivers license records) to 
confirm vital status in those who are not 
found to have died during the follow-up 
period.  

Although most developed countries have 
complete systems of death registration, 
and it is easy in theory to identify all 
deaths in a particular cohort, this may 
not be so straightforward in practice. For 
example, many countries do not have 
national identification numbers and 
record linkage may have to be done on 
the basis of name and date of birth. This 
may not be infallible because of 
differences in spelling of names, or 
inaccuracies in date of birth, but various 
record linkage programmes are available 
to identify “near matches” (Jones and 
Sujansky, 2004). These will be 
ineffective, however, for people who 
have changed their name, e.g. because 
of marriage. 

A further problem is that some countries 
do not have national death registrations, 
and these may be done on a regional or 
state basis instead, making it necessary 
to search multiple registers. Since 1979 
a National Death Index for the United 
States has been compiled and 
computerized and is available for vital 
status tracing (Wentworth et al, 1983). 

Just because someone has been not 
been identified in death records, this 
does not mean that they are still alive 
and “at risk” since they may have 
emigrated or may not have been 
identified in death registrations for some 
other reason. It is therefore desirable to 
confirm that they are alive using other 
record sources such as drivers license 
records, voter registrations, social 
security records, etc. In the United 
States, the Social Security 
Administration (SSA) records have been 
frequently used in the past, and in Great 
Britain the Central Record Office of the 
Ministry of Pensions and National 
Insurance is the analogous tracing 
source (Checkoway et al, 2004). 

Coding of the disease outcome 

It is not only necessary to determine if 
and when an event such as a death or 
hospital admission occurred. It is also 
necessary to verify, for example, the 
cause of death, or the cause of a hospital 
admission. Coding of causes of death 
should be performed by a nosologist 
trained in the rules specified by the 
International Classification of Diseases 
(ICD) volumes compiled by the World 
Health Organisation. In many countries 
this is done routinely for national death 
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registration records, and it is not 
necessary (or desirable) to recode death 
registrations for a specific study. 
However, the ICD codes have changed 
over time, and when using routine death 
registration records it is necessary to be 
aware of which ICD revision was in effect 
at the time of death. 

Person-time 

In a study of a specific population, e.g. 
workers in a particular factory, 
participants may enter the study on 
the date that the study starts 
(1/1/70), or the date that they first 

meet the eligibility criteria (i.e. 
employment for one month), 
whichever is the latest date.  If they 
started working in the factory after the 
start of the study, then they would 
only start being followed on the date 
they started work (or a subsequent 
date when they met the eligibility 
criteria). 

They stop contributing person-time 
when they die (or are diagnosed with 
the disease in an incidence study), 
emigrate, they are lost to follow-up, or 
the study finishes (31/12/99) 
whichever is the earliest.  

 

Example 9.4 

Munk Nielsen et al 
(2003) studied long-
term mortality after 
poliomyelitis by 
identifying a group of 
5,977 patients diagnosed 
with poliomyelitis in 
Copenhagen between 
1919 and 1954. This 
involved a review of 
more than 80,000 
consecutive hospital 
records for 
Blegdamshospitalet 
which served as the 
primary centre for 
diagnosing and treating 
patients with acute 
poliomyelitis in the area 
of greater Copenhagen. 
Information extracted 
from the records 
included name, sex, date 
and place of birth, date 
of admission and 
discharge, and details of 
the acute severity of the 
case.  

Since 1 April 1968, all 
Danish citizens have 
been given a unique 
identification number, 
which is recorded in the 
Danish Civil Registration 
System (CRS). The 
cohort was linked to the 
CRS to identity individual 
CRS numbers which 
were then used to 
identify deaths in the 
Danish Cause-of-Death 
Register. Patients not 
identified in the CRS 
were believed to have 
died or emigrated before 
1 April 1968 and for 
these patients the 
Cause-of-Death Register 
was searched for their 
name and date of birth. 

Patients were followed 
from the initiation of the 
Cause-of-Death Register 
in 1943 or the month 
after the hospital 

discharge (whichever 
came later) until the 
date of death, 
emigration or 1 May 
1997 (whichever came 
earlier). 

There were 1295 deaths 
compared with an 
expected number of 
1141 (SMR 1.14, 95% CI 
1.07-1.20). Excess 
mortality was restricted 
to polio patients with a 
history of severe 
paralysis of the 
extremities (SMR = 
1.69, 95% CI 1.32-2.15) 
or patients who had 
been treated for 
respiratory failure during 
the epidemics (SMR = 
2.71; 95% CI 2.18-
3.37).
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Summary 

Cohort studies provide the most 
comprehensive approach for evaluating 
patterns of exposure and disease, since 
they involve studying the entire source 
population (assuming that there is a 
100% response rate) over the entire risk 
period.  

Thus, the cohort design ideally includes 
all of the relevant person-time 
experience of the source population over 
the risk period. A cohort study may be 
based on a particular community (e.g. a 
geographical community), or on a more 
specific population defined by a 
particular exposure (e.g. workers in a 
particular factory). In both instances, an 
internal comparison would ideally be 
made between those participants 

exposed and those participants not 
exposed to a particular risk factor. 
However, in some instances, all of the 
study participants may be exposed, or 
valid individual exposure information 
may not be available, and it may be 
necessary to make an external 
comparison, e.g. with national mortality 
rates (in which case the national 
population comprises the source 
population for the study). It is important 
that any comparisons are made over the 
same risk period, and that follow-up is 
as complete as possible. The basic effect 
measures in a cohort study are the rate 
ratio and risk ratio. Methods of data 
analysis for these effect measures are 
described in chapter 12.
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CHAPTER 10: Case-control Studies 
(In: Pearce N. A Short Introduction to Epidemiology. 2nd ed. Wellington, CPHR, 2005)

As discussed in chapter 2, the only 
conceptual difference between a full 
cohort study based on a specified source 
population and risk period, and an 
(incidence) case-control study based on 
the same source population and risk 
period, is that the latter involves 
outcome-specific samples of the source 
population, rather than an analysis of 
the entire source population. There is 

usually little loss of precision compared 
to a full cohort study, and there may be 
considerable savings in terms of time 
and expense, particularly if the study 
disease is rare or has a long induction 
time. 

In this chapter I discuss the practicalities 
of conducting an (incidence) case-control 
study.

10.1: Defining the source population and risk period

An incidence case-control study should 
be based on a specified source 
population and risk period. The task in 
such a population-based case-control 
study is then to identify all cases of 
the outcome under study that are 
generated by the source population 
over the risk period. Controls are then 
sampled at random from the source 
population.  

In some instances, cases may be 
identified from a particular disease 
register which is not comprehensive 
with respect to the population of any 

defined geographical area. This may 
be a formal register (such as a Cancer 
Register) or a similar data source (e.g. 
admission records for a particular 
hospital). In such a registry-based 
study the task is to identify the source 
population for the register (e.g. all 
persons who would have been 
admitted to the hospital if they had 
developed the disease under study). 
This obviously poses more problems in 
the appropriate selection of controls 
than is the case for a population-based 
study; these issues are discussed in 
more depth below.  
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Example 10.1

Bigert et al (2001) 
studied myocardial 
infarction (MI) among 
professional drivers. The 
source population 
comprised all men aged 
45-70 years free of 
previous MI and living in 
Stockholm County 
during 1992-1993. 
Cases of first MI 
generated by this source 
population and risk 
period were identified 
from three sources: the 
medical care units at the 
10 emergency hospitals 
within the Stockholm 
County (87% of the 
cases), other hospital 

units (1% of the cases, 
obtained from a 
computerized hospital 
discharge register), or 
death certificates from 
the Causes of death 
Register at Statistics 
Sweden (12% of the 
cases). Controls were 
selected at random from 
a computerized 
population register, 
stratified for sex, 5-year 
age-group, hospital 
catchment area and year 
of enrolment in the 
study (1992 or 1993). 
The 1,067 cases and 
1,482 controls 
completed a postal 

questionnaire (for fatal 
cases the questionnaires 
were completed by next-
of-kin). Of the cases, 45 
(4.2%) had worked as a 
bus driver, compared 
with 31 (2.1%) of the 
controls, yielding an 
odds ratio of 2.14 (95% 
CI 1.34-3.41). The 
corresponding odds 
ratios for taxi drivers 
and truck drivers were 
1.88 (95% CI 1.19-2.98) 
and 1.66 (95% CI 1.22-
1.26) respectively. 
Adjustment for potential 
confounders gave lower 
odds ratios: 1.49, 1.34 
and 1.10 respectively. 

10.2: Selection of cases 

In a population-based study the first 
step in the selection of cases is to 
attempt to ascertain all cases generated 
by the source population over the risk 
period (Checkoway et al, 2004). If 
complete case ascertainment is not 
achieved, then the relative risk estimate 
(odds ratio) will not necessarily be 
biased unless case ascertainment is 
associated with exposure history, e.g. if 
people who are prescribed a particular 
drug receive more intensive medical 

screening and are therefore more likely 
to be diagnosed with a non-fatal 
myocardial infarction. 

In a registry-based study the case-group 
usually consists of all incident cases 
occurring in the registry during the risk 
period. The “registry” could consist of a 
formal population-based registry (e.g. a 
cancer registry or birth defects registry), 
or could involve an ad hoc “registry”, 
e.g. based on admission records for the 
major hospitals in a city. 
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Example 10.2 

Mian et al (2001) studied homicide in 
Orangi, the largest squatter settlement 
in Karachi with an estimated population 
of 1.2 million. They defined the cases as 
individuals who lived in Orangi and were 
killed in Orangi between January 1994 
and January 1997, due to intentional 
violence, by firearms, sharp or blunt 
trauma. Cases were identified in the 15 
neighbourhoods (out of 103 in total in 
Orangi) which field workers identified as 
the highest violence neighbourhoods. 
Field workers identified households 
where they knew someone had been 
killed; in a few neighbourhoods they also 
contacted other social organisations in 
the community to identify further cases. 
Controls were selected from a random 
sample of households enrolled in a 
related study conducted at the same 
time in the same 15 neighbourhoods. For 

both cases and controls, the interviews 
were conducted with their wife, or if she 
was inaccessible or unwilling it was 
conducted with the wife of the head of 
the household. People who were killed 
were 34 times more likely to have 
attended all political processions (29% 
versus 1%, odds ratio (OR) = 34, 95% 
CI 4-749), 19 times more likely to have 
attended political meetings (31% versus 
2%, OR = 19, 95% CI 4-136), and 17 
times more likely to have held an 
important position in a political party 
(29% versus 2%, OR = 17, 95% CI 3-
120). The authors concluded that 
homicide in Orangi was political and that 
efforts to build trust between ethnic 
groups and to build legitimacy for non-
violent forms of conflict resolution are 
important steps to limit future violence.

10.3: Selection of controls 

Control sampling options 

As discussed in chapter 2, there are 
three main options for selection of 
controls: (i) cumulative sampling 
involves selecting controls from those 
who do not experience the outcome 
during the risk period (i.e. the 
survivors) and will estimate the 
incidence odds; (ii) case-cohort 
sampling involves selecting controls 
from the entire source population and 
will estimate the risk ratio; (iii) density 
sampling involves selecting controls 
longitudinally throughout the course of 
the study and will estimate the rate 
ratio. Density sampling is therefore 
usually the preferred approach since 

the rate ratio is usually the effect 
measure of interest. Fortunately, 
although case-control studies have 
traditionally been presented in terms 
of cumulative sampling (e.g. Cornfield, 
1951), most case-control studies 
actually involve density sampling 
(Miettinen, 1976), often with matching 
on a time variable (such as calendar 
time and/or age), and therefore 
estimate the rate ratio without the 
need for any rare disease assumption 
(Pearce, 1993). In particular, the 
“standard” population-based case-
control design in which all cases 
occurring in a country (or state or city) 
in a particular year are compared with 
a control sample of all other people 
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living in the same country during the 
same year, actually involves density 
sampling with calendar year as the 
“time” matching variable (possibly with 
additional matching on the additional 
“time” variable of age). 

Sources of controls 

In a population-based case-control 
study, controls are usually sampled at 
random from the entire source 
population (perhaps with matching on 
factors such as age and gender). In 
some instances, it may be necessary 
to restrict the source population in 
order to achieve valid control 
sampling. For example, if controls are 
to be selected from voter registration 
rolls, and these are known to be less 
than 100% complete for the 
geographical area under study, then 
the source population might be 
restricted to persons appearing on the 
voter registration roll, and cases that 
were not registered to vote would be 
excluded; controls would then be 
sampled from this redefined source 
population by taking a random sample 
of the roll. 

In registry-based studies, selection of 
controls may not be so straightforward 
because the source population may not 
be so easy to define and enumerate. For 
example, if there are two major hospitals 
in a city, and a study is based on lung 
cancer admissions in one of them during 
a defined risk period, then the source 
population is “all those who would have 
come to this hospital for treatment if 
they had developed lung cancer during 
this risk period”. This population may be 
difficult to define and enumerate, 
particularly if cases may also be referred 
from smaller regional hospitals. The best 
solution is usually to define a more 
specific source population (e.g. all people 
living in the city) and to attempt to 
identify all cases generated by that 
source population, e.g. by including 

admissions from all major hospitals in 
the city and excluding cases who do not 
live in the city; controls can then be 
sampled from that defined source 
population. 

If it proves impossible to define and 
enumerate the source population, then 
one possibility is to select controls 
from people appearing in the same 
“register” for other health conditions 
(e.g. admissions to the hospital for 
other causes). This may not only 
produce a valid sample of the “source 
population”, but may also have 
advantages in making the case and 
control recall more comparable (Smith 
et al, 1988). However, it may result in 
bias if the other health conditions are 
also caused (or prevented) by the 
exposure under study (Pearce and 
Checkoway, 1988). For this reason, 
the population-based approach is 
preferable, although registry-based 
studies may still be valuable when 
population-based studies are not 
practicable, provided that careful 
consideration is given to possible 
sources of bias. 

Matching 

In some instances it may be appropriate 
to match cases and controls on potential 
confounders (e.g. age and gender). This 
can be done by 1:1 matching (e.g. for 
each case, choose a control of the same 
age and gender) or by frequency 
matching (e.g. if there are 25 male cases 
in the 30-34 age-group then choose the 
same number of male controls for this 
age-group). It is important to 
emphasize, however, that this will not 
remove confounding in a case-control 
study, but will merely facilitate its 
control in the analysis. For example, in a 
case-control study of lung cancer, the 
cases will generally be relatively old 
whereas a random general population 
control sample will be relatively young. 
This may lead to inefficiencies when age 
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is controlled in the analysis since the 
older age-groups will contain many cases 
and few controls, whereas the younger 
age-groups will contain many controls 
and few cases. Matching on age will 
ensure that there are approximately 
equal numbers of cases and controls in 
each age-strata and will thereby improve 
the precision of the effect estimates 
(given a fixed number of cases and 
controls). However, it will not remove 
confounding by age – it merely makes it 
easier to control in the analysis 
(Checkoway et al, 2004).  

It is also important to emphasize that if 
“pair” matching (i.e. 1:1 matching) has 
been done, then it is important to control 
for the matching factors in the analysis, 
but that this need not involve a 
“matched analysis”. For example, if pair 
matching has been done on age and 
gender, then it is important to control for 
age and gender in the analysis, but this 

can be done with simple stratification on 
age (e.g. by five-year age-groups) and 
gender and it is not necessary to retain 
the 1:1 matched pairs in the analysis 
(Rothman and Greenland, 1998). 

There are also potential disadvantages of 
matching. In particular, matching may 
actually reduce precision in a case-
control study if it is done on a factor that 
is associated with exposure but is not a 
risk factor for the disease under study 
and hence is not a true confounder 
(Rothman and Greenland, 1998). 
Furthermore, matching is often 
expensive and/or time consuming. For 
these reasons, it is usually sufficient, and 
preferable, to only match on basic 
demographic factors such as age and 
gender, and to then control for other 
potential confounders (along with age 
and gender) in the analysis (Checkoway 
et al, 2004). 

 

Example 10.3 

Cole et al (2000) 
studied time urgency 
and risk of non-fatal 
myocardial infarction 
(MI) in a study of 340 
cases and an equal 
number of age, sex and 
community-matched 
controls. Cases were 
identified from 
admissions to the 
coronary or intensive 
care units of six 
suburban Boston 
hospitals between 1 
January 1982 and 31 
December 1983. Those 
eligible for inclusion 
were white men and 

women under 76 years 
old living in the Boston 
area with no previous 
history of MI. For each 
case, a control subject 
of the same sex and 
age (+ 5 years) was 
selected at random 
from the residents’ list 
of the town in which 
the patient resided. 
Each subject was 
interviewed in his or 
her home by one of two 
trained nurse 
interviewers 
approximately 8 weeks 
after discharge from 
the hospital. A sense of 

time urgency/ 
impatience was 
ascertained using four 
items from the 10-item 
Framingham Type A 
scale. A dose-response 
relation was apparent 
among subjects who 
rated themselves 
higher on the four-item 
urgency/impatience 
scale with a matched 
odds ratio for non-fatal 
MI of 4.45 (95% CI 
2.20-8.99) comparing 
those with the highest 
rating to those with the 
lowest.
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10.4: Measuring exposure 

Once the cases and controls have been 
selected, information on previous 
exposures is then obtained for both 
groups. As discussed in chapter 8, there 
are a variety of possible methods for 
measuring exposure in case-control 
studies. In some instances this may be 
from historical records, e.g. personnel 
records that contain work history 
information.  

Perhaps more commonly, exposure 
information may be obtained from 
questionnaires. It is this latter feature of 
case-control studies which has left them 

open to criticism as being particularly 
prone to bias, e.g. because the recall of 
past exposures (e.g. eating meat, 
drinking alcohol, spraying pesticides) 
may be different between cases of 
disease and healthy controls. However, 
collecting exposure information from 
questionnaires is not an inherent feature 
of case-control studies, and is sometimes 
also a feature of cohort studies. Thus, 
there is nothing inherently biased in the 
case-control design; rather what is 
important is the validity of the exposure 
information that is collected, whatever 
study design is employed. 

Summary 

The only conceptual difference between 
a full cohort study based on a specified 
source population and risk period, and 
an (incidence) case-control study based 
on the same source population and risk 
period, is that the latter involves 
outcome-specific samples of the source 
population, rather than an analysis of 
the entire source population. There is 
usually little loss of precision compared 
to a full cohort study, and there may be 
considerable savings in terms of time 
and expense, particularly if the study 
disease is rare or has a long induction 
time. 

The key feature of good case-control 
study design is that the study should be 
based on a specified source population 

and risk period. The tasks are then to: 
(i) identify all cases generated by the 
source population over the risk period; 
(ii) select a random sample of controls 
from the source population over the risk 
period (ideally by density matching); (iii) 
obtain exposure information from cases 
and controls in a standardised and 
unbiased manner.  

The standard effect estimate in a case-
control study is the odds ratio. If controls 
are selected by density matching, then 
the odds ratio will estimate the incidence 
rate ratio (in the source population and 
risk period) in an unbiased manner 
without the need for any rare disease 
assumption. Methods of data analysis for 
odds ratios are described in chapter 12. 
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CHAPTER 11: Prevalence Studies 
(In: Pearce N. A Short Introduction to Epidemiology. 2nd ed. Wellington, CPHR, 2005)

As discussed in chapter 3, incidence 
studies are usually the preferred 
approach, but may be time consuming 
and expensive, and it may be difficult to 
identify incidence cases of non-fatal 
chronic conditions such as diabetes. In 
particular, some degenerative diseases 
(e.g. chronic bronchitis) may have no 
clear point of onset. 

Thus, in some settings (e.g. developing 
countries) and for some conditions (e.g. 
chronic non-fatal disease) prevalence 
studies may be the only realistic option. 
Furthermore, in some instances we may 
be more interested in factors that affect 
the current burden of disease in the 
population (i.e. prevalence) rather than 
disease incidence. 

Examples of prevalence surveys include 
general households surveys conducted 
by government agencies (e.g. Ministry of 
Health, 1999), more focussed general 
population surveys (e.g. Australian 
Bureau of Statistics, 1998) such as the 
National Health and Nutrition 
Examination Survey (NHANES) 
(Kuczmarski et al, 1994), international 
surveys of the prevalence of conditions 
such as asthma (Burney et al, 1994; 
Asher et al, 1995), and surveys in 
populations with specific exposures (e.g. 
surveys of asthma in children living on 
farms (Braun-Fahrländer et al, 1999)). 

In this chapter I discuss the practicalities 
of conducting a prevalence study. 

11.1: Defining the source population

Prevalence studies usually involve 
surveys in a source population defined 
by a geographic region or a particular 
exposure (e.g. an industry or factory). 
As with an incidence study, it is 
important that this source population 
is well-defined and that a high 
response rate is obtained.  
 
In a prevalence study, disease 
prevalence is measured at a specific 
point in time, rather than over a 
specified risk period. However, this 

“point in time” may not necessarily be 
the same “date” for each study 
participant. For example, studies of 
congenital malformations usually 
involve measuring the prevalence of 
congenital malformations at birth. 
Thus the source population may be “all 
babies born in this city during 2004” 
and the “time” at which prevalence is 
measured may be “birth” which will be 
a different date and time for each 
member of the source population. 
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Example 11.1

Wilks et al (1999) 
conducted a survey of 
the prevalence of 
diabetes in the 
population of Spanish 
Town, Jamaica. A 
random population 
sample was recruited by 
door-to-door canvassing 
(n=1,303) and oral 

glucose tolerance testing 
was conducted after an 
overnight fast (response 
rate = 60%). The 
prevalence of Type 2 
diabetes mellitus was 
15.7% among women 
and 9.8% among men. 
The sex patterns were 
consistent with the 

fourfold excess of 
diabetes in women 
compared to men, but 
obesity could not 
entirely account for the 
high prevalences 
observed which exceed 
those previously 
reported among 
European populations. 

11.2: Measuring health status 

Prevalence studies differ from 
incidence studies in that the 
measurement of health status most 
commonly involves a morbidity survey, 
rather than identifying incident cases 
through routine records (e.g. hospital 
admissions or cancer registration 
records). Methods that can be used for 
such surveys have already been 
discussed in chapter 8 and will only be 
considered briefly here. 

As discussed in chapter 8, methods of 
measuring disease status, that are 
most appropriate in clinical practice 
may not be appropriate or applicable 
in epidemiologic surveys. Furthermore, 
the criteria for deciding the most valid 
method to use may differ between 
clinical practice and epidemiological 
surveys. In the clinical setting the 
emphasis is often on the positive 
predictive value of a test, which 
depends in turn on the sensitivity, 
specificity, and the underlying 
population prevalence of the disease. 

In fact, if we are using a particular 
method to measure the prevalence of a 
disease, and: 

 Sn = sensitivity 

 Sp = specificity 

P is the true prevalence of the 
disease in the source population  

then the observed prevalence that will 
be obtained in the survey is: 

 Sn P + (1 - Sp) (1 - P)  

= P (Sn + Sp - 1) + (1 - Sp) 

therefore if two populations are being 
compared, and their true prevalences 
(according to the gold standard) are P1 
and P0 respectively, then the observed 
difference in prevalence between the two 
centres is: 

 (P1 – P0)(Sn + Sp - 1) 

The expression (Sn + Sp -1) is 
Youden's Index. When this is equal to 
1 (which only occurs when the 
sensitivity and specificity are both 1) 
then the observed difference in 
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prevalence will be exactly equal to the 
true difference in prevalence. More 
commonly, Youden's Index will be less 
than 1 and the observed prevalence 
difference will be reduced accordingly, 
e.g. if Youden’s Index is 0.75 then the 
observed prevalence difference will be 
0.75 times the true prevalence 
difference. Youden's Index therefore 
provides the most appropriate 

measure of the validity of a particular 
question or technique in prevalence 
comparisons (Pekkanen and Pearce, 
1999).  

In this respect, basic symptom 
questionnaires may often perform 
better than supposedly more 
“objective” measures such as bronchial 
responsiveness testing (Pearce et al, 
1998). 

Example 11.2 

Table 11.1 shows 
hypothetical data from a 
study of asthma 
prevalence in childhood. 
The true prevalence 
rates were 40% in the 
exposed group, and 20% 
in the non-exposed 
group; the true 
prevalence difference 
was thus 20%. If 20% of 
asthmatics are 
incorrectly classified as 
non-asthmatics (i.e. a 
sensitivity of 0.80), and 
10% of non-asthmatics 
are incorrectly classified 
as asthmatics (i.e. a 
specificity of 0.90), then 
the observed 
prevalences will be 38% 

and 24% respectively 
(table 11.1); the 
observed prevalence 
difference will then be 
14% (instead of the true 
value of 20%). The net 
effect is to bias the 
prevalence difference 
towards the null value of 
zero. The extent of the 
bias is related to 
Youden’s index: this is 
0.80+0.90-1.0=0.7, and 
the observed prevalence 
difference of 14% is 0.7 
times the true value of 
20%. If the sensitivity 
and specificity had been 
perfect (1.0) then 
Youden’s Index would 
have been 1.0 and there 

would have been no 
diminishment in the 
observed prevalence 
difference; on the other 
hand, if the sensitivity 
and specificity had been 
no better than chance 
(e.g. both equal to 0.5) 
then Youden’s Index 
would have been zero, 
and the expected value 
of the observed 
prevalence difference 
also have been zero 
(although the observed 
value might be different 
from zero due to chance 
variation). 

.
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Table 11.1 

Hypothetical data from a prevalence study in which 20% of asthmatics  
and 10% of non-asthmatics are incorrectly classified 

 
  Actual    Observed 
  ----------------------------- --------------------------------------------------- 
    Non- 
  Exposed  exposed Exposed  Non-exposed 
----------------------------------------------- -----------------------  --------------------------- 
Asthmatics    40     20  32  + 6 =  38         16 +  8 = 24  
Non-asthmatics  60  80  54  + 8 =  62  72 +  4 = 76 
-------------------------------------------------------------------------------------------------- 
Total    100  100   100   100 
-------------------------------------------------------------------------------------------------- 
Prevalence     40% 20%   38%   24% 
-------------------------------------------------------------------------------------------------- 
 

11.3: Measuring exposure 

As discussed in chapter 8, there are a 
variety of possible methods for 
measuring exposure in prevalence 
studies. These include questionnaires, 
biological measurements, and 
examination of historical records (e.g. 
personnel and work history records). 
 

In a full prevalence study, exposure is 
measured in all members of the source 
population. In a prevalence case-
control study, exposure information is 
obtained for the cases and for a 
control sample of non-cases (chapter 
3). Thus, a prevalence case-control 
study can be based on routine records 
(see example 3.2) or as a second 
phase of a specific prevalence survey.  

Whereas incidence case-control studies 
involve at least three possible methods 
of selecting controls, in a prevalence 
case-control study there is only one 
valid option, i.e. controls should be 
selected at random from the non-
cases. For both groups, information on 
historical and current exposures may 
be obtained, as well as information on 
potential confounders. 

It is important to emphasize that 
although a prevalence study involves 
measuring disease status at one point 
in time, information can be collected 
on historical exposures. For example, a 
prevalence survey of bronchitis might 
involving assessing whether a person 
has “current bronchitis” on a particular 
day, but exposure information could be 
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collected for both current smoking as 
well as smoking history. 

 

Example 11.3 

Guha Mazumder et al 
(2000) studied arsenic 
in drinking water and 
the prevalence of 
respiratory effects in 
West Bengal, India. A 
cross-sectional survey 
involving 7,683 
participants of all ages 
was conducted in an 
arsenic-affected region 
between April 1995 and 
March 1996. The 
source population was 
based on two areas of 
the arsenic-affected 
districts south of 
Calcutta. A 
convenience sampling 
strategy was used in 
which the field team 
went to the centre of 
each village and 
selected the most 
convenient hamlet to 
begin sampling; all 

household members 
were invited to 
participate and 
sampling continued 
from house to house 
until sufficient numbers 
had been recruited. 
Participants were 
clinically examined and 
interviewed, and the 
arsenic content of their 
current primary 
drinking water source 
was measured. There 
were few smokers and 
analyses were confined 
to non-smokers (6,864 
participants). Among 
both males and 
females, the 
prevalence of cough, 
shortness of breath, 
and chest sounds 
(crepitations and/or 
rhonchi) in the lungs 
rose with increasing 

arsenic concentrations 
in drinking water. In 
participants with 
arsenic-related skin 
lesions, the age-
adjusted prevalence 
odds ratios for cough 
were 7.8 for females 
(95% CI 3.1-19.5), and 
5.0 for males (95% CI 
2.6-9.9); the 
corresponding findings 
for chest sounds were 
9.6 (95% CI 4.0-22.9) 
and 6.9 (95% CI 5.8-
92.8), and those for 
shortness of breath 
were 23.3 (95% CI 
5.8-92.8) and 3.7 
(95% CI 1.3-10.6). The 
authors concluded that 
these results add to 
evidence that long-
term ingestion of 
arsenic can cause 
respiratory effects.

Summary 

Incidence studies are usually the 
preferred approach, but in some settings 
and for some conditions prevalence 
studies are the only option. Furthermore, 
in some instances we may be more 
interested in factors that affect the 
current burden of disease in the 

population rather than disease incidence. 
The conduct of a prevalence study is (at 
least in theory) relatively 
straightforward. A source population is 
defined, and at one point in time the 
prevalence of disease is measured in the 
population. Exposure information is then 
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obtained for all members of the source 
population (a prevalence study), or for 
all cases of the disease under study and 
a control sample of the non-cases (a 
prevalence case-control study). The 

standard effect estimate in a prevalence 
study is the odds ratio. Methods of data 
analysis for odds ratios are described in 
chapter 12. 
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CHAPTER 12: Data Analysis 
(In: Pearce N. A Short Introduction to Epidemiology. 2nd ed. Wellington, CPHR, 2005) 

In this chapter I describe the basic 
principles of data analysis in 
epidemiologic studies including the 
estimation of effects and calculation of 
confidence intervals while controlling for 
potential confounders. I only cover the 
basic methods for dichotomous 
exposures and dichotomous health 

outcomes (chapters 2 and 3) and I do 
not consider more complex study 
designs (chapter 4). Readers requiring a 
more formal and detailed statistical 
presentation are referred to standard 
texts (particularly Rothman and 
Greenland, 1998).

12.1: Basic Principles

Data Management 

With the rapid advances in computer 
technology in recent years, almost 
any epidemiological study can be 
analysed on a personal computer 
(PC). In addition, a wide variety of 
software is available for data entry, 
data analysis and graphical 
presentation of data on PCs (much of 
which is not available for mainframe 
computers). One particularly useful 
package is EPI-INFO (Dean et al, 
1990), which is available through 
WHO (Geneva) and CDC (Atlanta) 
and can be downloaded from 
http://www.cdc.gov/epiinfo. This 
package is particularly useful for data 
entry and editing, and can be used 
on small laptop computers in the field 
as well as on desktop computers. 
However, the same facilities are 
available in many other packages, 
some of which are more sophisticated 
both statistically and in terms of data 
management (e.g. Stata (Hills and 
De Stavola, 2002)). A catalogue of 

epidemiological resources, including 
epidemiological software which is 
available free of charge, or at 
minimal cost, has been produced by 
the Epidemiology Monitor, and this 
publication also has a regular feature 
reviewing such software (see the 
Epidemiology Monitor Website at 
http://www.epimonitor.net/). There 
is also an excellent epidemiology 
Excel spreadsheet (Episheet) 
available, which can be used to do 
most of the analyses described in this 
chapter (Rothman, 2002). It can be 
downloaded from http://www.oup-
usa.org/epi/rothman/. 

Given the huge amount of work usually 
involved in collecting data for 
epidemiologic studies, it is essential to 
examine the raw data very carefully for 
errors and to make every attempt to 
avoid errors in the transfer of data from 
questionnaires onto the computer. In 
most cases, the first step is to translate 
some of the information into numerical 
(or alphabetical) codes, following a set 
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of coding instructions that should have 
been prepared prior to data collection. 
For instance, a detailed occupational 
history may have been taken in a semi-
narrative form, and must be 
subsequently coded. It is usually 
preferable to do this when entering the 
data directly onto a PC, since this 
minimizes transcription errors.  

Once the data are coded and entered, 
programmes should be run that seek 
strange data, contradictions, and 
impossible data (e.g. a systolic blood 
pressure of 40 mm Hg). These 
programmes should not be restricted to 
a search for logic errors or 
impermissible symbols. They should 
include also procedures that identify 
values that lie outside plausible limits. 
The values being queried should be 
listed, and decisions on how the "errors" 
are dealt with should be documented. 
With many packages, this process can 
be conducted during the actual data 
entry since the range of permissible 
values (for numeric variables) or legal 
codes (for alphanumeric variables) can 
be specified, as well as variables which 
must not be left blank, conditional 
jumps (e.g. if the answer is "NO" the 
computer skips to the next relevant 
question), repeat fields (so that the 
value of a variable is set by default to 
that of the last record entered or 
displayed), and logical links between 
variables. The best method of data 
checking is to enter all of the data 
twice, and to compare the two files for 
discrepancies. This approach, combined 
with extensive edit checks at the time of 
data entry, should minimize errors. 

Even with double data entry and 
sophisticated checking procedures, 
errors may occur, and it is therefore 
important to run further edit checks 
before data analysis begins. It is 
particularly important to finish all edit 
checks and to have a final version of the 
data file before any data analysis is 

done, both to avoid confusion, and also 
to avoid any possibility of the data 
coding and checking being influenced by 
the results of preliminary analyses. 
Once the data have been entered and 
edited, there is usually a major task of 
data management. This typically 
involves the use of a computer package 
to transform the data, compute new 
variables, and prepare new files suitable 
for statistical analysis. 

Data Analysis 

The basic aim of the analysis of a single 
study is to estimate the effect of 
exposure on the outcome under study 
while controlling for confounding and 
minimizing other possible sources of 
bias. In addition, when confounding and 
other sources of bias cannot be 
removed, then it is important to assess 
their likely strength and direction. This 
latter task was discussed in chapter 7. 
In this chapter I focus on the control of 
confounding. 

Effect estimation 

The basic effect measures, and methods 
of controlling confounding are described 
below. Usually, in epidemiology studies, 
we wish to measure the difference in 
disease occurrence between groups 
exposed and not exposed to a particular 
factor.  

The analysis ideally should control 
simultaneously for all confounding 
factors. Control of confounding in the 
analysis involves stratifying the data 
according to the levels of the 
confounder(s) and calculating an effect 
estimate which summarizes the 
information across strata of the 
confounder(s). For example, controlling 
for age (grouped into 5 categories) and 
gender (with 2 categories) might involve 
grouping the data into the 10 (= 5 x 2) 
confounder strata and calculating a 
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summary effect estimate which is a 
weighted average of the stratum-
specific effect estimates.  

Confidence intervals  

As well as estimating the effect of an 
exposure, it is also important to 
estimate the statistical precision of the 
effect estimate. The confidence interval 
(usually the 95% confidence interval) 
provides a range of values in which it is 
plausible (provided that there is no 
uncontrolled confounding or other bias) 
that the true effect estimate may lie. If 
the statistical model is correct, and 
there is no bias, then the confidence 
intervals derived from an infinite series 
of study repetitions would contain the 
true effect estimate with a frequency no 
less than its confidence level (Rothman 
and Greenland, 1998). 

The usual practice is to use 90% or 
95% confidence intervals, but these 
values are completely arbitrary. Given a 
large enough sample, an approximate 
95% confidence interval for the true 
population mean is: 

 m + 1.96 SE 

where m is the observed mean of the 
sample, and SE is its standard error, 
estimated from the standard deviation 
of the sample divided by the square root 
of the sample size. 

This confidence interval depends on two 
quantities (m and SE) which are 
estimated from the sample itself, and 
different results will be obtained from 
different samples. Provided that the 
samples are sufficiently large, then 95% 
of the time, the confidence interval 
estimated from the sample would 
contain the true population mean. One 
should note, however, that this is no 
guarantee that the interval from one’s 
data contains the true value. 

In most instances, epidemiologic data 
involves binomial (i.e. with persons in 
the denominator) or Poisson (i.e. with 
person-years in the denominator) 
outcome variables and ratio measures 
of effect. The estimated relative risk 
(rate ratio, risk ratio, odds ratio) has an 
approximate log normal distribution, 
and the ln(RR) can be written as the 
difference of the two compared risks: 

 ln(RR) = ln(R1/R0) = ln(R1) – ln(R0) 

Thus (assuming no bias) the 95% 
confidence interval for the natural log 
(ln) of the relative risk is: 

 ln(RR) + 1.96 SE 

Thus the confidence interval for the 
relative risk itself is: 

 RR e + 1.96 SE

P-Values 

As discussed in chapter 5, the p-value is 
the probability that a test statistic as 
large or larger as that observed could 
have arisen by chance if there is no bias 
and if the null hypothesis (of no 
association between exposure and 
disease) is correct. The test statistic 
defines the p-value and usually has the 
form: 

 z = D/SE 

where D is the observed difference and 
SE is the standard error of the 
difference. 

This provides a test statistic (z) which 
can be used to calculate the probability 
(p-value) that a difference as large as 
that observed would have occurred by  
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chance if the null hypothesis (that there 
is no difference in reality) were true.  

In the past, p-values have often been 
used to describe the results of a study 
as "significant" or "not significant" on 
the basis of decision rules involving an 
arbitrary alpha level as a “cutoff” for 
significance (e.g. alpha=0.05). 
However, it is now recognised that there 
are major problems with this approach 
(Rothman and Greenland, 1998). 

First, the p-value associated with a 
difference in outcome between two 
groups depends on two factors: the size 
of the difference; and the size of the 
study. A very small difference may be 
statistically significant if the study is 
very large, whereas a very large 
difference may not be significant if the 
study is very small. p-values thus 
combine two phenomena which should 
be kept separate: the size of the effect; 
and the size of the study used to 
measure it. 

A second problem with significance 
testing is more fundamental. The 
purpose of significance testing is to 
reach a decision. However, in 
environmental research, decisions 
should ideally not be based on the 
results of a single study, but should be 
based on information from all available 

studies, as well as non-statistical 
considerations such as the plausibility 
and coherence of the effect in the light 
of current theoretical and empirical 
knowledge (see chapter 13). 

The problems of significance testing can 
be avoided by recognizing that the 
principal aim of an individual study 
should be to estimate the size of the 
effect rather than just to decide whether 
or not an effect is present. The point 
estimate should be accompanied by a 
confidence interval (the interval 
estimate) which indicates the precision 
of the point estimate by providing a 
range of values within which it is most 
plausible that the true treatment effect 
may lie if no bias were present (Gardner 
and Altman, 1986; Rothman and 
Greenland, 1998). The point estimate 
reflects the size of the effect, whereas 
the confidence interval reflects the 
study size on which this effect estimate 
is based. This approach also facilitates 
the comparison of the study findings 
with those of previous studies. Note that 
all conventional statistical methods 
assume “no bias is present”. Because 
this assumption is rarely if ever correct, 
further considerations beyond the 
statistics presented here are always 
needed (see chapter 13). 

 

12.2: Basic Analyses

Measures of Disease Occurrence

The basic measures of disease occurrence 
and association have been introduced in 
chapter 2. In this section I consider them 
in more depth and show how to calculate 
confidence intervals for the commonly 

used measures. In the next section I 
extend these methods to adjust for 
potential confounders. I will only present 
“large sample” methods of analysis which 
have sample size requirements for valid 
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use. To avoid statistical bias, more 
complex techniques are required for 
analyses of studies involving very small 
numbers or sparse stratifications 
(Greenland et al, 2000). Once again, 
readers are referred to standard texts 
(particularly Rothman and Greenland, 
1998) for a more comprehensive review 
of these methods. I will emphasise 
confidence intervals, but will also present 
methods for calculating p-values. 

Table 12.1 shows the findings of a 
hypothetical incidence study of 20,000 

persons followed for 10 years. As noted 
in chapter 2, three measures of disease 
incidence are commonly used in incidence 
studies. 

The observed incidence rate in the non-
exposed group (table 9.1) has the form: 
 

  cases b 
 I

0
 = --------------   =    ---- 

  person-time        Y
0

Table 12.1 

Findings from a hypothetical cohort study of 20,000 persons followed for 10 years 

 Exposed Non-exposed Ratio 
Cases 1,813 (a) 952 (b) 
Non-cases 8,187 (c) 9,048 (d)   
 
Initial population size 10,000 (N1) 10,000 (N0) 
 
Person-years 90,635 (Y1) 95,163 (Y0) 
Incidence rate 0.0200 (I1) 0.0100 (I0) 2.00 
Incidence proportion (average risk) 0.1813 (R1) 0.0952 (R0) 1.90    
Incidence odds 0.2214 (O1) 0.1052 (O0) 2.11
 
 
 

The natural logarithm of I0 has an 
approximate standard error (under the 
Poisson model for random variation in 
b) of: 

 SE [ln(I
0
)] =  (1/b)0.5 

and an approximate 95% confidence 
interval for the incidence rate is thus: 

I
0
 e+ 1.96 SE 

The observed incidence proportion in 
the non-exposed group has the form: 

  cases b 
 R

0
 = ---------- = ------ 

  persons N
0 
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The observed incidence proportion in 
the non-exposed group has the form: 

  cases b 
 R

0
 = ---------- = ------ 

  persons N
0

Its logarithm has an approximate 
standard error (under the binomial 
model for random variation in b) of: 

 SE[ln(R0)]   =   (1/b - 1/N0)0.5 

and an approximate 95% confidence 
interval for the incidence proportion is 
thus: 

 R
0
e+ 1.96 SE 

The observed incidence odds in the 
non-exposed group has the form: 

  cases b 
 O

0
 =  ----------- = ---- 

  non-cases     d 

The natural log of the incidence odds 
(ln(O

0
)) has (under a binomial model) 

an approximate standard error of: 

SE(ln(O
0
))    =   (1/b + 1/d)0.5

and a 95% confidence interval for O
0
 

is: 

 O
0
 e+1.96 SE 

These three measures of disease 
occurrence all involve the same 
numerator: the number of incident 

cases of disease (b). They differ in 
whether their denominators represent 
person-years at risk (Y

0
), persons at 

risk (N
0
), or survivors (d). 

Measures of Effect 

Corresponding to these three 
measures of disease occurrence, there 
are three principal ratio measures of 
effect which can be used in incidence 
studies: the rate ratio, the risk ratio, 
and the odds ratio. In incidence case-
control studies, the measure of effect 
is always the odds ratio (though what 
this is estimating depends on how the 
controls were chosen). In prevalence 
studies, the effect measure is usually 
the prevalence odds ratio, and the 
statistical methods are identical to 
those used in incidence case-control 
studies. 

The observed incidence rate ratio has 
the form (table 12.1): 

  I
1
     a/Y

1

 RR = ----- = ------ 
  I

0
     b/Y

0 

An approximate p-value for the null 
hypothesis that the rate ratio equals 
the null value of 1.0 can be obtained 
using the person-time version of the 
Mantel-Haenszel chi-square (Breslow 
and Day, 1987). This test statistic 
compares the observed number of 
exposed cases with the number 
expected under the null hypothesis 
that I1 = I0: 

 [Obs(a) - Exp(a)]2    [a - Y
1
M

1
/T]2

χ2 = ---------------------- = ---------------- 
 Var(Exp(a))        [M

1
Y

1
Y

0
/T2] 

where M
1
, Y

1
, Y

0
 and T are as depicted 

in table 12.1. 
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The natural logarithm of the rate ratio 
has (under a Poisson model for a and 
b) an approximate standard error of: 

 SE[ln(RR)] = (1/a + 1/b)0.5

An approximate 95% confidence 
interval for the rate ratio is then given 
by (Rothman and Greenland, 1998): 

 RR e+1.96 SE 

The risk ratio has the form: 

  R
1
   a/N

1

 RR = ------ = -------- 
  R

0
   b/N

0

An approximate p-value for the null 
hypothesis that the risk ratio equals 
the null value of 1.0 can be obtained 
using the Mantel-Haenszel chi-square 
(Mantel and Haenszel, 1959): 

 [Obs(a) - Exp(a)]2   [a - N
1
M

1
/T]2

χ2 = ------------------ = ------------------ 
 Var(Exp(a))           [M

1
M

0
N

1
N

0
/T2(T-1)] 

where M1, M0, N1, N0 and T are as 
depicted in table 9.1.  

The natural logarithm of the risk ratio 
has (under a binomial model for a and 
b) an approximate standard error of: 

SE[ln(RR)] = (1/a - 1/N1 + 1/b - 1/N0)0.5

An approximate 95% confidence 
interval for the risk ratio is then given 
by: 

 RR e+1.96 SE 

The incidence odds ratio has the form: 

  O
1
     a/c      ad 

 OR =  --- =  -----  =  
  O

0
     b/d      bc 

An approximate p-value for the 
hypothesis that the odds ratio equals 
the null value of 1.0 can be obtained 
from the Mantel-Haenszel chi-square 
(Mantel and Haenszel, 1959): 

 [Obs(a) - Exp(a)]2 [a - N
1
M

1
/T]2

χ2 = ------------------- = ----------------- 
  Var(Exp(a)) [M

1
M

0
N

1
N

0
/T2(T-1)] 

where M
1
, M

0
, N

1
, N

0
 and T are as 

depicted in table 9.1. 

The natural logarithm of the odds ratio 
has (under a binomial model) an 
approximate standard error of: 

SE[ln(OR)] = (1/a +1/b+ 1/c +1/d)0.5

An approximate 95% confidence 
interval for the odds ratio is then given 
by: 

 OR e+1.96 SE
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12.3: Control of Confounding

In general, control of confounding 
requires careful use of a priori 
knowledge, together with assessment 
of the extent to which the effect 
estimate changes when the factor is 
controlled in the analysis. Most 
epidemiologists prefer to make a 
decision based on the latter criterion, 
although it can be misleading, 
particularly if misclassification is 
present (Greenland and Robins, 
1985a). The decision to control for a 
presumed confounder can certainly 
be made with more confidence if 
there is supporting prior knowledge 
that the factor is predictive of 
disease. 

There are two methods of calculating 
a summary effect estimate to control 
confounding: pooling and 
standardisation (Rothman and 
Greenland, 1998). 

Pooling 

Pooling involves calculating a 
summary effect estimate assuming 
stratum-specific effects are equal. 
There are a number of different 
methods of obtaining pooled effect 
estimates, but a commonly used 
method which is both simple and 
close to being statistically optimal 
(even when there are small numbers 
in all strata) is the method of Mantel 
and Haenszel (1959). 

The Mantel-Haenszel summary rate 
ratio has the form: 

  Σ a
i
Y

0i
/T

i

 RR = -------------- 
  Σ b

i
Y

1i
/T

i

where Ti = Y1i + Y0i

An approximate p-value for the null 
hypothesis that the summary rate ratio 
is 1.0 can be obtained from the person-
time version of the one degree-of-
freedom Mantel-Haenszel summary chi-
square (Shore et al, 1976): 

 [ΣObs(a) - ΣExp(a)]2 [Σai - ΣY1iM1i/Ti]2

χ2 = ------------------------- = --------------------  
 ΣVar(Exp(a)) [ΣM1iY1iT0i/Ti

2] 

 
where M1i, Y1i, Y0i and Ti are as depicted 
in table 12.1. 

An approximate standard error for the 
natural log of the rate ratio is 
(Greenland and Robins, 1985b): 

  [Σ M
1i
Y1iY0i/Ti

2]0.5

 SE = ------------------------------ 
  [(ΣaiY0i/Ti)(ΣbiY1i/Ti)]0.5 

Thus, an approximate 95% confidence 
interval for the summary rate ratio is 
then given by: 
 

 RR e+1.96 SE 

The Mantel-Haenszel summary risk ratio 
has the form: 
 

  Σ aiN0i/Ti

 RR =  ------------- 
  ΣbiN1i/Ti
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An approximate p-value for the 
hypothesis that the summary risk ratio is 
1.0 can be obtained from the one degree-
of-freedom Mantel-Haenszel summary 
chi-square (Mantel and Haenszel, 1959): 

 [ΣObs(a) - ΣExp(a)]2   [Σai - ΣM1iM1i/Ti]
2

χ2 = ----------------------- = ------------------  

 ΣVar(Exp(a))              [ΣM1iM0iM1iN0i/Ti
2(Ti-1)] 

where M1i, M0i, N1i, N0i and Ti are as 
depicted in table 9.1. 

An approximate standard error for the 
natural log of the risk ratio is 
(Greenland and Robins, 1985b): 
 

  [Σ M
1i
N1iN0i/Ti

2 - Σaibi/Ti]0.5

 SE = --------------------------------- 
  [(ΣaiN0i

/Ti)(ΣbiN1i/Ti)]0.5 

Thus, an approximate 95% confidence 
interval for the summary risk ratio is 
then given by: 
 
 RR e+1.96 SE 

The Mantel-Haenszel summary odds 
ratio has the form: 
 
  Σ a

i
d

i
/T

i

 OR = ----------- 
  Σ b

i
c

i
/T

i

An approximate p-value for the 
hypothesis that the summary odds ratio 
is 1.0 can be obtained from the one 
degree-of-freedom Mantel-Haenszel 
summary chi-square (Mantel and 
Haenszel, 1959): 
 

 [ΣObs(a) - ΣExp(a)]2  [Σa
i
 - ΣN1iM1i/Ti]

2

χ2 = ------------------------ = ---------------------- 

 ΣVar(Exp(a))              [Σ M1iM0iN1iN0i/Ti
2(Ti-1)]] 

where M1i, M0i, N1i, N0i and Ti are as 
depicted in table 12.1. 
 
An approximate standard error for the 
natural log of the odds ratio (under a 
binomial or hypergeometric model) is 
(Robins et al, 1986): 

  ΣPR Σ(PS + QR) ΣQS 
 SE = ----- +  -------------- + ------ 
  2R+

2 2R+S+ 2S+
2 

where:  P = (ai + di)/Ti 

Q = (bi + ci)/Ti

R = aidi/Ti

S = bici/Ti

R+ = ΣR 
S+ = ΣS 

Thus, an approximate 95% confidence 
interval for the summary odds ratio is 
then given by: 
 

OR e+1.96 SE 

Standardisation 

Standardisation is an alternative 
approach to obtaining a summary 
effect estimate (Miettinen, 1974; 
Rothman and Greenland, 1998). 
Pooling involves calculating the effect 
estimate under the assumption that 
the measure (e.g. The rate ratio) 
would be the same (uniform) across 
strata if random error were absent. In 
contrast, standardisation involves 
taking a weighted average of the 
disease occurrence across strata (e.g. 
the standardized rate) and then 
comparing the standardized 
occurrence measure between exposed 
and non-exposed (e.g. the 
standardized rate ratio) with no 
assumptions of uniformity of effect. 
Standardisation is more prone than 
pooling to suffer from statistical 
instability due to small numbers in 
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specific strata; by comparison, pooling 
with Mantel-Haenzsel estimators is 
robust and in general its statistical 
stability depends on the overall 
numbers rather than the numbers in 
specific strata. However, direct 
standardisation has practical 
advantages when more than two 
groups are being compared, e.g. when 
comparing multiple exposure groups or 
making comparisons between multiple 
countries or regions, and does not 
require the assumption of constant 
effects across strata. 

The standardized rate has the form: 

  Σ w
i
R

i
     

 R = --------- 
  Σ w

i
   

The natural log of the standardized rate 
has an approximate standard error 
(under the Poisson model for random 
error) of: 

  [Σ w
i

2
 R

i
/Yi]

0.5

 SE = ---------------- 
  RΣ wi 

where Yi is the person-time in stratum i. 
An approximate 95% confidence interval 
for the standardized rate is thus: 

 R e+ 1.96 SE 

The standardized risk has the form: 

  Σ w
i
R

i
    

 R = ---------- 
  Σ w

i
   

The natural log of the standardized risk 
has an approximate standard error 

(under the binomial model for random 
error) of: 

  [Σ wi
2R

i
(1-Ri)/Ni]

0.5

 SE = ----------------------- 
  RΣ w

i

where Ni is the number of persons in 
stratum i. An approximate 95% 
confidence interval for the 
standardized rate is thus: 

 R e+ 1.96 SE 

Standardisation is not usually used for 
odds, since the odds is only used in 
the context of a case-control study, 
where the odds ratio is the effect 
measure of interest, but standardized 
odds ratios can be computed from 
case-control data (Miettinen, 1985; 
Rothman and Greenland, 1998). 

A common choice of weights in 
international comparisons is Segi's 
World Population (Segi, 1960) shown 
in table 12.2, although it does reflect a 
“developed countries” bias in its age 
structure. In etiologic studies a better 
approach is to use the structure of the 
overall source population as the 
weights when calculating standardized 
rates or risks in subgroups of the 
source population. When one is 
specifically interested in the effects 
that exposure had, or would have, on 
a particular subpopulation, then 
weights should be taken from that 
subpopulation. 

Multiple Regression 

Multiple regression allows for the 
simultaneous control of more 
confounders by "smoothing" the data 
across confounder strata. In particular, 
rate ratios (based on person-time 
data) can be modelled using Poisson 
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log-linear rate regression, risk ratios can 
be modelled using binomial log-linear risk 
regression, and odds ratios can be 
modelled using binomial logistic 
regression (Pearce et al, 1988; Rothman 
and Greenland, 1998). 

Table 12.2 
 

Segi’s World population 
 

Age-group Population 
----------------------------- 

   0-4 years  12,000 
   5-9 years  10,000 
10-14 years    9,000 
15-19 years    9,000 
20-24 years    8,000 
25-29 years    8,000 
30-34 years    6,000 
35-39 years    6,000 
40-44 years    6,000 
45-49 years    6,000 
50-54 years    5,000 
55-59 years    4,000 
60-64 years    4,000 
65-69 years    3,000 
70-74 years    2,000 
75-59 years    1,000 
80-84 years       500 
  85+ years       500 

----------------------------- 
Total  100,000 

----------------------------- 
Source: Segi (1960)  

Similarly, continuous outcome variables 
(e.g. in a cross-sectional study) can be 
modelled with standard multiple linear 
regression methods. These models all 
have similar forms, with minor variations 
to take into account the different data 
types. They provide powerful tools when 
used appropriately, but are often used 
inappropriately, and should always be 
used in combination with the more 
straightforward methods presented here 
(Rothman and Greenland, 1998). 
Mathematical modelling methods and 
issues are reviewed in depth in a number 
of standard texts (e.g. Breslow and Day, 
1980, 1987; Checkoway et al, 2004; 
Clayton and Hills, 1993; Rothman and 
Greenland, 1998), and will not be 
discussed in detail here. 

Summary

The basic aim of the analysis of a single 
study is to estimate the effect of 
exposure on the outcome under study 
while controlling for confounding and 
minimizing other possible sources of 
bias. In addition, when confounding and 
other sources of bias cannot be 
removed, then it is important to assess 
their likely strength and direction. 
Control of confounding in the analysis 
involves stratifying the data according 
to the levels of the confounder(s) and 
calculating an effect estimate which 
summarizes the information across 
strata of the confounder(s). In general, 
control of confounding requires careful 
use of a priori knowledge, together with 

assessment of the extent to which the 
effect estimate changes when the factor 
is controlled in the analysis. There are 
two basic methods of calculating a 
summary effect estimate to control 
confounding: pooling and 
standardisation. Multiple regression 
allows for the simultaneous control of 
more confounders by "smoothing" the 
data across confounder strata. It 
provides a powerful tool when used 
appropriately, but are often used 
inappropriately, and should always be 
used in combination with the more 
straightforward methods presented 
here.
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CHAPTER 13: Interpretation 

[In: Pearce N. A Short Introduction to Epidemiology. 2nd ed. Wellington, CPHR, 2005]

In this chapter I first consider the issues 
involved in interpreting the findings of a 
single epidemiological study. I then 
consider problems of interpretation of all 
of the available evidence. Interpreting 
the findings of a single study includes 
considering the strength and precision 
of the effect estimate and the possibility 
that it may have been affected by 
various possible biases (confounding, 
selection bias, information bias). If it is 
concluded that the observed 

associations are likely to be valid, then 
attention shifts to more general causal 
inference, which should be based on all 
available information. In both situations, 
it should be stressed that 
epidemiological studies almost always 
contain potential biases, and the focus 
should be on assessing the likely 
direction and magnitude of the biases, 
and whether they could explain the 
observed associations.

13.1: Appraisal of a Single Study

It is easy to criticize an epidemiological 
study. Populations do not usually 
randomize themselves by exposure 
status, do not always respond to 
requests to participate in 
epidemiological studies, may supply 
incomplete or inaccurate exposure 
histories for known or possible risk 
factors, and cannot be asked about 
unknown risk factors. Thus, although 
some studies are clearly better than 
others, it is important to emphasize that 
perfect epidemiological studies do not 
exist. Furthermore, it is usually not 
possible, nor desirable, to reach 
conclusions on the basis of the findings 
of a single study, and  it is essential to 
consider all of the available evidence. 

Nevertheless, when confronted with a 
new study, perhaps with unexpected 
findings, it is valuable to first consider 
possible explanations for the 

associations found (or a lack of 
association) in the study, before 
proceeding to consider other evidence. 
However, the emphasis should not be 
on simply preparing a list of possible 
biases (e.g. Feinstein, 1988). Rather, it 
is essential to attempt to assess the 
likely strength and direction of each 
possible bias, and to assess whether 
these biases (and their possible 
interactions) could explain the observed 
associations. 

What is the magnitude and 
precision of the effect estimate? 

As discussed in chapter 5, random error 
(lack of precision) will occur in any 
epidemiologic study, just as it occurs in 
experimental studies. The possible role 
of random error is often addressed 
through the question “could the 
observed association be due to chance 
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alone?” and this issue is usually 
assessed by calculating the p-value. 
This is the probability (assuming that 
there are no biases) that a test statistic 
as large as that actually observed would 
be found in a study if the null 
hypothesis were true, i.e. that there 
was in reality no causal effect of 
exposure. However, recent reviews have 
stressed the limitations of p-values and 
significance testing (Rothman, 1978; 
Gardner and Altman, 1986; Poole, 
1987; Pearce and Jackson, 1988). 
Foremost among these is that 
significance testing attempts to reach a 
decision on the basis of the data from a 
single study, whereas what is more 
important is the strength and precision 
of the effect estimate and whether the 
findings of a particular study are 
consistent with those of previous 
studies. These issues are better 
addressed by calculating confidence 
intervals rather than p-values (Gardner 
and Altman, 1986; Rothman and 
Greenland, 1998). Similarly, the 
possibility that the lack of a statistically 
significant association could be due to 
lack of precision (lack of study power) is 
more appropriately addressed by 
considering the confidence interval of 
the effect estimate rather than by 
making post hoc power calculations 
(Smith and Bates, 1992). 

What are the likely strengths and 
directions of possible biases? 

Systematic error is distinguished from 
random error in that it would be present 
even with an infinitely large study, 
whereas random error can be reduced 
by increasing the study size. Thus, 
systematic error, or "bias", occurs if 
there is a systematic difference between 
what the study is actually estimating 
and what it is intended to estimate. The 
types of bias (confounding, selection 
bias, information bias) have already 
been discussed in chapter 6. In the 
current context the key issue is that any 

epidemiologic study will involve biases. 
The problem is not to identify possible 
biases (these will almost always exist), 
but rather to ascertain what direction 
they are likely to be in, and how strong 
they are is likely to be. 

Confounding 

In assessing whether an observed 
association could be due to confounding, 
the first consideration is whether all 
potential confounders have been 
appropriately controlled for or 
appropriately assessed (e.g. by 
collecting and using confounder 
information in a sample of study 
participants). If not, it is essential to 
assess the potential strength and 
direction of uncontrolled confounding.  

In some areas of epidemiologic 
research, e.g. occupational and 
environmental studies, the strength of 
uncontrolled confounding is often less 
than might be expected. For example, 
Axelson (1978) has shown that for 
plausible estimates of the smoking 
prevalence in occupational populations, 
confounding by smoking can rarely 
account for a relative risk of lung cancer 
of greater than 1.5. Similarly, 
Siemiatycki et al (1988) have found that 
confounding by smoking is generally 
even weaker for internal comparisons in 
which exposed workers are compared 
with non-exposed workers in the same 
factory or industry). On the other hand, 
the potential for confounding can be 
severe in studies of lifestyle and related 
factors (e.g. diet, nutrition, exercise). 

It is unreasonable to simply assume 
that a strong association could be due 
to confounding by unknown risk factors, 
since to be a strong confounder a factor 
must be a very strong risk factor as well 
as being strongly associated with 
exposure. For example, if an 
occupational study found a relative risk 
of 2.0 for lung cancer in exposed 
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workers, it is highly unlikely that this 
could be due to confounding by 
smoking, and it would be unreasonable 
to dismiss the study findings merely 
because smoking information had not 
been available. On the other hand, 
small relative risks (e.g. those in the 
range of 0.7-1.5, as frequently occur in 
dietary studies) are not so difficult to 
explain by lack of measurement, or poor 
measurement and control, of 
confounders. 

Selection bias 

Whereas confounding generally 
involves biases inherent in the source 
population, selection bias involves 
biases arising from the procedures by 
which the is study subjects are chosen 
from the source population. As with 
confounding, if it is not possible to 
directly control for selection bias, it 
still may be possible to assess its likely 
strength and direction. It is 
unreasonable to dismiss the findings of 
a particular study because of possible 
selection bias, without at least 
attempting to assess which direction 
the possible selection bias would have 
been in, and how strong it might have 
been. 

Information bias 

With regards to information bias, the 
key issue is whether misclassification 
is likely to have been differential or 
non-differential. In the latter case, the 
bias will usually be in a know direction, 
i.e. towards the null. If 
misclassification has been differential, 
then it is important to attempt to 
assess what direction the bias is likely 

to have been in. The important issue is 
not whether information bias could 
have occurred (this is almost always 
the case since there are almost always 
problems of misclassification of 
exposure and/or disease) but rather 
the likely direction and strength of 
such bias. In particular, if a study has 
yielded a positive finding (i.e. an effect 
estimate markedly different from the 
null value) then it is not valid to 
dismiss it because of the possibility of 
non-differential misclassification, or 
differential misclassification that is 
likely (although not guaranteed) 
produce a bias towards the null. 

Summary of Issues of Systematic 
Error 

In summary, when assessing whether 
the findings of a particular study could 
be due to such biases, the important 
issue is not whether such biases are 
likely to have occurred (since they will 
almost always be present to some 
extent), but rather what their direction 
and strength is likely to be, and 
whether they taken together could 
explain the observed association. In 
particular, epidemiological studies are 
often criticized on the grounds that 
observed associations could be due to 
uncontrolled confounding or errors in 
the classification of exposure or 
disease. However, the likely strength is 
of uncontrolled confounding is 
sometimes less than might be 
expected, and non-differential 
misclassification of exposure will 
usually (though not always) produce a 
tendency for false negative findings 
rather than false positive findings.
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13.2: Appraisal of All of the Available Evidence

If it is concluded that the association in 
a particular study is unlikely to be 
primarily due to bias and chance, 
attention then shifts to assessing 
whether this association exists more 
generally, and whether the association 
is likely to be causal. This should involve 
a review of all of the available evidence 
including non-epidemiological studies. A 
systematic quantitative review of the 
epidemiological evidence may involve a 
formal meta-analysis with statistical 
pooling of information from the various 
studies (e.g. Dickerson and Berlin, 
1992; Rothman and Greenland is, 
1998). However, such a summary of the 
various study findings is just one step in 
the process of causal inference. A 
systematic approach to causal inference 
was elaborated by Hill (1965) and has 
since been widely used and adapted 
(e.g. Beaglehole et al (1993)). I will 
divide these considerations into those 
that involve systematic review of the 
epidemiological evidence (including 
meta-analyses) and those that also 
involve consideration of evidence from 
animal or mechanistic studies. 

Evidence From Epidemiological 
Studies 

Considerations for assessing the 
epidemiological evidence include 
temporality, specificity, consistency, 
strength of association and whether 
there is evidence of a dose-response 
relationship (Hill, 1965). 

Temporality is crucial; the cause must 
precede the effect. This is usually self-
evident, but difficulties may arise in 
studies (particularly case-control 
studies) when measurements of 
exposure and effect are made at the 

same time (e.g. by questionnaire, is 
blood tests, etc). 

The criterion of specificity has been 
criticised (e.g. Rothman and Greenland, 
1998), on the grounds that there are 
many instances of exposures that have 
multiple (i.e. non-specific) effects. 
These include tobacco smoke and 
ionizing radiation, both of which cause 
many different types of cancer. 
Nevertheless, the specificity of the 
effect may be relevant in assessing the 
possibility of various biases. For 
example, if an exposure is associated 
with esophageal cancer but is not 
associated with lung cancer, then the 
association is unlikely to be due to 
confounding by smoking. 

Consistency is demonstrated by several 
studies giving similar results, and 
corresponds to the statistical concept of 
homogeneity across studies (Rothman 
and Greenland, 1998). This is 
particularly important when a variety of 
designs are used in different settings, 
since the likelihood that all studies are 
all suffering from the same biases may 
thereby be reduced. On the other hand, 
a lack of consistency does not exclude a 
causal association, because different 
exposure levels and other conditions 
may alter the effect of exposure in 
certain studies. 

The strength of association is important 
in that a relative risk than is far from 
the null value of 1.0 is more likely to be 
causal than a weak association, which 
could be more easily explained by 
confounding or other biases. However, 
the fact that an association is weak does 
not preclude it from being causal; rather 
it means that it is more difficult to 

 148



exclude alternative explanations for the 
observed association. 

A dose-response relationship occurs 
when changes in the level of exposure 
are associated with changes in the 
prevalence or incidence of the effect 
than one would expect from biologic 
considerations. The absence of an 
expected dose-response relationship 
provides evidence against a causal 
relationship, while the presence of an 
expected relationship narrows the scope 
of biases that could explain the 
relationship. 
 
Experimental evidence provides strong 
evidence of causality, but this is rarely 
available for occupational exposures. 

Meta-Analysis 

In the past, epidemiological evidence 
has been assessed in literature reviews, 
but in recent years there has been an 
increasing emphasis on formal meta-
analysis, i.e. systematic quantitative 
reviews. One benefit of a is  meta-
analysis is that it can reduce the 
probability of false negative results 
because of small numbers in specific 
studies (Egger and Davey-Smith, 1997), 
and may enable the effect of an 
exposure to be estimated with greater 
precision than is possible in a single 
study. Furthermore, although a meta-
analysis should ideally be based on 
individual data, relatively simple 
methods are available for meta-
analyses of published studies in which 
the study (rather than the individual) is 
the unit of statistical analysis (Rothman 
and Greenland, 1998). Such methods 
can be used to address the causal 
considerations outlined above, in 
particular the overall strength of 
association and the shape and strength 
of the dose-response curve. Just as 
importantly, statistical methods can also 
be used to assess consistency between 
studies, but because statistical tests for 

homogeneity often have relatively low 
power, it is more appropriate to 
examine the magnitude of variation 
instead of relying on formal statistical 
tests (Rothman and Greenland, 1998). 

The limitations of meta-analyses should 
also be emphasized (Greenland, 1994; 
Egger and Davey-Smith, 1997; Egger et 
al, 1997). Strikingly different results can 
be obtained depending on which studies 
are included in a meta-analysis. 
Publication bias is of particular concern, 
given the tendency of journals to 
publish “positive findings” and for the 
publication of “negative findings” to be 
delayed (Egger and Davey-Smith, 
1998), but naive graphical approaches 
to its assessment can be misleading 
(Greenland, 1994).  

Even when an “unbiased” and 
comprehensive list of studies is included 
in a meta-analysis, there still remain the 
same problems of selection bias, 
information bias, and confounding, that 
need to be addressed in assessing 
individual studies. Thus, a systematic 
quantitative review (i.e. meta-analysis) 
is like a report of a single study in that 
both quantitative and narrative 
elements are required to produce a 
balanced picture (Rothman and 
Greenland, 1998). Essentially the same 
issues need to be a addressed as in a 
report of a single study: what is the 
overall magnitude and precision of the 
effect estimate (if it is considered 
appropriate to calculate a summary 
effect estimate), and what are likely 
strengths and directions of possible 
biases?  

An advantage of meta-analysis is that 
these issues can often be better 
addressed by contrasting the findings of 
studies based on different populations, 
or using different study designs. Thus, 
possible systematic biases can be 
addressed with actual data from specific 
studies rather than by hypothetical 
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examples. For example, in a study of an 
occupational exposure and lung cancer, 
there might be concern that an 
observed association was due to 
confounding by smoking. If smoking 
data had not been available, then the 
best that could be done would be to 
attempt to assess the likely extent of 
confounding by smoking (see chapter 
6), for example by sensitivity analysis 
(Rothman and Greenland, 1998). 
However, in a meta-analysis, if smoking 
information were available for some 
(but not all) studies then these studies 
could be examined to assess the likely 
strength and direction of confounding by 
smoking (if any). 

Similarly, studies of exposure to 
phenoxy herbicides and the 
development of soft tissue sarcoma and 
non-Hodgkin’s lymphoma have 
produced widely differing findings, and 
it has been suggested that the high 
relative risks obtained in the Swedish 
studies could be due to “recall bias” (a 
particular type of information bias) in 
that cases or cancer (soft tissue 
sarcoma or non-Hodgkin’s lymphoma) 
were compared with healthy general 
population controls, and that patients 
with cancer may be more likely to recall 
previous chemical exposures. This 
hypothesis was tested in specific studies 
(e.g. Hardell et al, 1979, 1981), but can 
also be tested more generally by 
considering the findings of studies that 
used general population controls with 
those that used “other cancer” controls. 
In particular, one New Zealand study 
(Pearce et al, 1986) used both types of 
controls and found similar results with 
each, indicating that recall bias was not 
an important problem in this study. 

In summary, a key advantage of meta-
analysis is that pooling findings from 
studies will increase the numbers 

available for analysis and will therefore 
reduce random error. However, it will 
not necessarily reduce systematic error, 
and may even increase it (because of 
publication bias). Nevertheless, a 
careful meta-analysis will enable various 
possible biases to be addressed, using 
actual data from specific studies, rather 
than hypothetical examples. Such a 
meta-analysis will therefore facilitate 
the consideration of the causal 
considerations listed above, and in some 
instances will provide a valid summary 
estimate of the overall strength of 
association and the shape and strength 
of the dose-response curve (Greenland, 
2003). 

Combination of Epidemiological 
Evidence With Evidence From Other 
Sources 

Epidemiological evidence should be 
considered together with all other 
available evidence, including animal 
experiments. An association is plausible 
if it is consistent with other knowledge, 
whereas the epidemiological evidence is 
coherent if it is not inconsistent with 
other knowledge. For instance, 
laboratory experiments may have 
shown that a particular environmental 
exposure can cause cancer in laboratory 
animals, and this would make more 
plausible is the hypothesis that this 
exposure could cause cancer in humans. 
However, biological plausibility is a 
relative concept; many epidemiological 
associations were considered 
implausible when they were first 
discovered but were subsequently 
confirmed by other evidence, e.g. the 
relation of lice to typhus. Lack of 
plausibility may simply reflect lack of 
knowledge (medical, biological, or 
social) which is continually changing and 
evolving.
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Summary

The task of interpreting the findings of 
a single epidemiological study should 
be differentiated from that of 
interpreting all of the available 
evidence. Interpreting the findings of a 
single study includes considering the 
strength and precision of the effect 
estimate and the possibility that it may 
have been affected by various possible 
biases (confounding, selection bias, 
information bias). The important issue 
is not whether such biases are likely to 
have occurred (since they will almost 
always be present to some extent), 
but rather what their direction and 
strength is likely to be, and whether 
together they could explain the 
observed association. If the observed 
associations seem likely to be valid, 
then attention shifts to more general 
causal inference, which should be 
based on all available information. This 
includes assessing the specificity, 
strength and consistency of the 
association and the dose-response 
across all epidemiological studies. This 
may include the use of meta-analysis, 
but it is often not appropriate to derive 
a single summary effect estimate 
across all studies. Rather, a meta-
analysis can be used to examine 
hypotheses about reasons for 

differences between study findings and 
the likely magnitude of possible biases. 
Furthermore, causal inference also 
necessitates considering non-
epidemiological evidence from other 
sources (animal studies, mechanistic 
studies) in the consideration of more 
general causal criteria including the 
plausibility and coherence of the 
overall evidence. 

Despite the continual need to assess 
possible biases, and to consider 
possible imperfections in the 
epidemiological data, it is also 
important to ensure that preventive 
action occurs when this is warranted, 
albeit on the basis of imperfect data. 
As Hill (1965) writes: 

"All scientific work is incomplete - 
whether it be observational or 
experimental. All scientific work 
is liable to be upset or modified 
by advancing knowledge. That 
does not confer upon us a 
freedom to ignore the knowledge 
that we already have, or to 
postpone the action that it 
appears to demand at a given 
time."
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